
ECEn 665: Antennas and Propagation for Wireless Communications 43

3.2 Numerical Methods for Antenna Analysis

The sinusoidal current model for a dipole antenna is convenient because antenna parameters can be derived
in analytical form. Analytical results are useful for antenna synthesis and for gaining insight into the physical
behavior of the many types of dipole-like antennas that are in use. Due to radiation of energy from the current
mode on the antenna arms, however, the true current distribution on a dipole is not exactly sinusoidal. To
obtain a better approximation, we can use a numerical algorithm to solve for the current on a dipole antenna.

The major categories of numerical methods used in antenna analysis and design are the finite differ-
ence time domain method (FDTD) and the finite element method (FEM), which transform the differential
equations of electromagnetics into difference equations, and integral equation methods, which transform the
differential equations of electromagnetics through the use of a Green’s function into integral equations that
can be solved using the method of moments (MoM).

We will consider a very simple implementation of MoM for a one-dimensional integral equation. The
1D MoM is one of the oldest and easiest numerical methods to implement. Many more sophisticated algo-
rithms and software packages are available today, but the 1D case illustrates the basic concepts of numerical
analysis and can actually be used to solve fairly sophisticated electromagnetics problems. The 1D integral
equations are also referred to as thin-wire integral equations.

3.2.1 Pocklington’s Integral Equation

The first step in obtaining a numerical method based on MoM is to derive an integral equation from the
equations of electromagnetics. An integral equation is a relationship that involves an integral of an unknown
quantity, where the value of the integral is known. The unknown quantity is typically the current distribution
on an antenna or other radiating or scattering object. The integral is typically a convolution type integral,
where the integrand consists of a bivariate kernel function or Green’s function and the unknown current
distribution. Once we have derived the integral equation, we will then transform it using the MoM technique
into a matrix equation that can be solved using a computational algorithm.

To derive Pocklington’s integral equation, we begin with the magnetic vector potential radiated by a
z-directed dipole. Since the direction of the vector potential is the same as that of the current, A will only
have a z component, in which case (2.62) becomes

Ez = −jωAz −
j

ωµϵ

∂2Az
∂z2

(3.14)

Using the radiation integral (2.60) for the magnetic vector potential, this becomes∫
dr′Jz(r

′)

[
∂2

∂z2
+ k2

]
e−jkR

4πR
= jωϵEz(r) (3.15)

where R = |r − r′|. On the surface of the conductor, the electric field boundary condition requires that

Ez + Einc
z = 0 (3.16)

where Einc
z is the incident electric field from the source at the feed gap that excites the antenna. This leads

to the integral equation ∫
dr′Jz(r

′)

[
∂2

∂z2
+ k2

]
e−jkR

4πR
= −jωϵEinc

z (r) (3.17)

We will now assume that the wire is thin, so that the current distribution does not vary significantly
azimuthally around the wire. The current density can then be approximated as

Jz(r) =
Iz(z)

2πa
δ(ρ− a) (3.18)
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where a is the wire radius. Substituting this into (3.17) leads to

−jωϵEinc
z (r) =

∫ ∞

0

∫ 2π

0

∫ l/2

−l/2

Iz(z
′)

2πa
δ(ρ′ − a)

[
∂2

∂z2
+ k2

]
e−jkR

4πR
ρ′ dρ′ dϕ′ dz′

≃
∫ l/2

−l/2
Iz(z

′)

[
∂2

∂z2
+ k2

]
e−jkR

4πR
dz′

where

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (3.19)

≃
√
a2 + (z − z′)2 (3.20)

Working the derivatives in this expression provides the final form of Pocklington’s integral equation,∫ l/2

−l/2
Iz(z

′)
[
(1 + jkR)(2R2 − 3a2) + (kaR)2

] e−jkR
4πR5

dz′ = −jωϵEinc
z (z) (3.21)

One difficulty with this integral equation is the strong singularity of the kernel due to the R−5 term. This
singularity makes it difficult to work the integrals used in the method of moments to transform the integral
operator into a matrix. To avoid dealing with this singularity, alternate integral formulations are available.

3.2.2 Hallén’s Integral Equation

Another 1D integral equation can be derived from the Helmholtz equation for Az . Neglecting the variation
of Az in the x-y plane, the Helmholtz equation reduces to

∂2

∂z2
Az + k2Az = 0 (3.22)

on the surface of the conductor away from the driving source. In this equation, Az represents the total field
including the driving source, rather than only the radiated field as in the previous derivation. This differential
equation has the solution

Az(z) = −j√µϵ[A cos(kz) +B sin(k|z|)] (3.23)

where we have enforced the symmetry of the problem about z = 0. From the Lorenz gauge, we have that

∇ ·A = −jωµϵϕ

where ϕ is the electric potential. The gradient of A = Az ẑ is

∂Az
∂z

=

{
−j√µϵk[−A sin(kz) +B cos(k|z|)] z > 0

−j√µϵk[−A sin(kz)−B cos(k|z|)] z < 0

We now assume that a phasor voltage Vi is impressed at z = 0 over an infinitesimal feed gap. This is
called a delta-gap source. Due to the source, the electric potential must jump by Vi at z = 0, so that

−jωµϵVi =
[
∂Az
∂z

∣∣∣∣
z>0

− ∂Az
∂z

∣∣∣∣
z<0

]
= −j√µϵk2B
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from which we find that B = Vi/2. The radiation integral for A gives

Az(z) ≃ µ

∫ l/2

−l/2
I(z′)

e−jkR

4πR
dz′ (3.24)

Combining these expressions leads to the integral equation∫ l/2

−l/2
I(z′)

e−jkR

4πR
dz′ = − j

η
[A cos(kz) +

Vi
2
sin(k|z|)] (3.25)

which has a less singular kernel than Pocklington’s integral equation, and is therefore easier to integrate
when applying the method of moments. The price we pay for the simpler kernel is the presence of an
additional unknown coefficient that must be solved for along with the unknown current on the wire.

3.2.3 Method of Moments

In order to solve either of these integral equations for the current on the dipole, we can use a numerical
method that provides an approximate solution for the current. The method of moments allows us to trans-
form an integral equation into a matrix equation or linear system of equations. The linear system can be
readily solved to obtain samples or weights that give the unknown current in the integral equation. The basic
approach to transforming an integral equation into a linear system is the method of moments.

We expand the current distribution as a finite linear combination of known sources or expansion func-
tions, so that

I(z) ≃
N∑
n=1

cnfn(z) (3.26)

where cn are unknown coefficients and fn(z) are a set of known basis functions. Using this in the integral
term of Hallén’s integral equation leads to∫ l/2

−l/2

N∑
n=1

cnfn(z
′)
e−jkR

4πR
dz′ =

N∑
n=1

cn

∫
fn(z

′)
ejkR

4πR
dz′ (3.27)

The right and left-hand sides of (3.25) depend on z. We need to discretize the z dependence by projecting
both sides onto a set of M testing functions tm(z):∫

tm [LHS] =
∫
tm [RHS] (3.28)

This leads to

N∑
n=1

cn

[∫ ∫
tm(z)fn(z

′)
e−jkR

4πR
dz dz′

]
︸ ︷︷ ︸

Zmn

= − j
η

∫
tm(z)

[
A cos(kz) +

Vi
2
sin(k|z|)

]
dz (3.29)

This is a set of M linear equations with N +1 unknowns (cn and A). We have identified the elements of the
matrix as Zmn. Because the current unknown has units of Amps and the right hand side has units of Volts,
the units of the matrix elements are impedance (Ohms). Typically, we choose M so that the resulting linear
system has the same number of equations and unknowns and the resulting matrix is square.
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In order to proceed further, we need to make choices for the expansion and testing functions. Since the
current on the dipole is symmetric, we only need unknown coefficients cn for the current on one side of the
dipole. Let zn be a set of points along the dipole spaced ∆z apart, so that

zn = (n− 1/2)∆z, n = 1, 2, . . . , N, ∆z =
l/2

N + 1
(3.30)

We will choose the expansion and testing functions to be given by

fn(z) =

{
1 zn −∆z/2 ≤ z ≤ zn +∆z/2

0 otherwise
(3.31)

tm(z) = δ(z − zm) (3.32)

The expansion functions are pulse functions, and the testing functions are delta functions. The moment
matrix elements become

Zmn =

∫ zn+∆z/2

zn−∆z/2

e−jkR

4πR
dz′, R =

√
a2 + (zm − z′)2 (3.33)

The integral can be approximated using the midpoint rule, so that the value of the integral is approximated
by the length of the interval of integration ∆z multiplied by a sample of the integrand at the center zn of the
region of integration. This leads to

Zmn ≃ e−jkRmn

4πRmn
∆z, Rmn =

√
a2 + (zm − zn)2 (3.34)

for the elements of the moment matrix Z.
The matrix equation in (3.29) provides N linear equations. Since there is one additional unknown, A,

we need one more equation. To obtain this equation, we will use the fact that the current at the wire ends
is zero, so that I(±l/2) = 0 and we do not need an unknown coefficient cN+1 for the pulse function at the
end of the wire. Even though we will not use an expansion function at zN+1, we will still include a testing
function at zN+1, which will provide another equation and lead to a square linear system (i.e., M = N +1).
Equation (3.29) can be written in matrix form as

N∑
n=1

(Zmn + Z−
mn)cn +

j

η
A cos(kzm) = −jVi

2η
sin(k|zm|) (3.35)

The matrix with elements Zmn is called the moment matrix. Z−
mn is defined similarly to Zmn in (3.29) but

with Rmn =
√
a2 + (zm + zn)2, which accounts for the currents on the bottom half of the dipole. In array

form,  Zmn + Z−
mn

j
η cos(kzm)



c1
c2
...
cN
A

 =

 − jVi
2η sin(kzm)


m=1

m=N+1

(3.36)

This linear system can be solved for the unknown coefficients cn which provides samples of the current
distribution on the antenna.

With the current distribution, we can compute the input impedance and radiation pattern. The input
impedance is

Zin =
Vi
I(0)

=
Vi
c1

(3.37)
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where c1 is the current unknown located adjacent to the feed gap. To find the radiation pattern, we evaluate
the radiation integral numerically using the midpoint integration rule. For a z-directed current, the radiation
integral is

Eθ(r, θ, ϕ) = jkη
e−jkr

4πr
sin θ

∫ l/2

−l/2
I(z′)ejkz

′ cos θ dz′

≃ jkη
e−jkr

4πr
sin θ

∫ l/2

−l/2

∑
n

cnfn(z
′)ejkz

′ cos θ dz′

≃ jkη
e−jkr

4πr
sin θ

N∑
n=1

cn(e
jkzn cos θ + e−jkzn cos θ)∆z

This provides a way to obtain the far field of the dipole antenna from the current samples cn.
Both Hallén’s and Pocklington’s integral equations break down and give poor results as the wire radius

a becomes large. A typical value is a = .005λ, although useful results can be obtained with larger radii.
Due to the ill-conditioning of the moment matrix for large values of N , the method of moments also leads
to inaccurate results if too many basis functions are used. This is an undesirable property, because ideally
a numerical method should converge to the exact value as the number of unknowns is increased. Because
of this numerical instability, in modern software packages 1D integral equations have largely been replaced
by more sophisticated 3D integral equations or methods based on finite differences or finite elements. With
the 1D thin wire integral equation method developed in this section, good results can usually be obtained if
∆z ≃ 3a.
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