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8.3 Signal Correlation Matrices

So far, we have treated received and transmitted signals deterministically and have modeled antenna sys-
tems using current and voltage phasors that are independent of time. This implies that all received and
transmitted waveforms are time-harmonic or single-frequency sinusoids. Since noise, interference, and
even information-bearing signals can be modeled as random processes, we need to expand the treatment of
phased array antennas to include the statistical properties of array output voltage waveforms.

A single noise signal can be represented as a random process with specified statistical properties. For
array antennas, the noise signals at each element output can be correlated, so we will develop a formulation
that quantifies the statistical properties of multiple correlated noise signals. This correlation matrix repre-
sentation is a fundamental tool in array signal processing theory and has close connections to earlier results
from antenna theory and network theory.

8.3.1 Random Processes and Baseband Representation of Noise

For an antenna that receives random noise or modulated signals, the complex baseband voltage phasor vm(t)
at the mth output is a function of time. The real voltage signal before complex basebanding is related to the
complex baseband phasor by

Vm(t) = Re[vm(t)e
jωt] (8.15)

The bandwidth of vm(t) is set by a bandpass filter or other frequency-limited component in the system.
If the passband has an ideal rect response shape, then the bandwidth of vm(t) is the bandwidth B of the
passband. If the shape of the response is not ideal, then B can be obtained by a weighted integral of the
response, and is referred to as the system noise equivalent bandwidth. Normally, B is much smaller than
the system’s microwave center frequency ω/(2π), so vm(t) can be thought of as the envelope of a random
narrowband modulated sinusoid according to

Vm(t) = |vm(t)| cos[ωt+ ̸ vm(t)] (8.16)

Since thermal noise and other contributions to vm(t) are nondeterministic, both the real signal Vm(t) and the
complex baseband representation vm(t) can be modeled as random processes. Instead of using realizations
of the voltage signals in our analysis we will work with the statistics of the random processes. Typically,
noise and signals of interest have no DC component and have zero mean. The most important statistical
properties of the signal is the frequency content, as represented by the power spectral density, and the time-
average power, which is propertional to the variance of the random process.

8.3.2 Random Vectors and Signal Correlation Matrices

For array antennas, we must extend the concept of variance to multiple signals modeled by a vector of ran-
dom processes or random vector for short. The outputs of a receiving array can be represented by the random
vector v(t) = [v1(t) v2(t) · · · vN (t)]T . The individual signals or random process may not be statistically
independent, in which case we say that the signals are correlated. The fundamental second order statistic of
a vector of random processes is the covariance matrix. For zero mean random processes, covariance is equal
to correlation (see Section 10.1.2). As a matter of practical convenience, we will characterize array output
signals using the correlation matrix instead of the covariance matrix.

The correlation matrix is defined by the expectation of the outer product of the random vector,

Rv = E[vvH ] (8.17)
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where E[ · ] denotes expectation. Rigorously, the correlation matrix formulation holds for a temporally wide
sense stationary system. In practice, the correlation matrix is computed using sample estimates according to

R̂v =
1

N

N∑
n=1

v[n]v[n]H (8.18)

where the hat denotes a sample estimated correlation matrix. A correlation matrix is always Hermitian and
positive semidefinite. The diagonal elements of the correlation matrix gives the variance of each (zero mean)
signal, and the off-diagonal elements quantify the degree of correlation of pairs of signals.

8.4 Signal and Noise Model for Receiving Arrays

For a receiving array, the array output voltages include signal and noise contributions according to

v = vsig + vext + vloss + vrec︸ ︷︷ ︸
vn

+vint (8.19)

where vsig is the signal of interest, vext is noise due to external sources, vloss is thermal noise due to losses
in the array, vrec is noise due to the front end amplifiers and receivers, and vint is unwanted interference
from transmitters other than the one radiating the signal of interest. In some cases, the external noise consists
of thermal noise from ground, warm objects, and sky, but in high traffic frequency bands, interference from
other transmitters is often dominant. In most cases, the signal, noise, and interference voltage waveforms
are uncorrelated, so that

E[vsigv
H
n ] = E[vsigv

H
int] = E[vnv

H
int] = 0 (8.20)

where 0 is the zero matrix. With this assumption, the array output correlation matrix is

Rv = Rsig +Rext +Rloss +Rrec︸ ︷︷ ︸
Rn

+Rint (8.21)

where each term is the correlation matrix of one of the voltage contributions (e.g., Rsig = E[vsigv
H
sig]).

The correlation matrix formulation is closely related to time average power. If the output voltage for a
formed phased array beam is applied to a load resistance R, then the time average power dissipated in the
load is

P = 1
2RE[|vout|

2]

= 1
2RE[w

HvvHw]

= 1
2Rw

HE[vvH ]w

= 1
2Rw

HRvw (8.22)

For an array that uses digital beamforming, the array output correlation matrix is computed in digital signal
processing, so the leading factor has little importance and we often simply refer to the quadratic form
wHRvw as the beam output power. Using (8.21), the beam output power can be expanded into its various
signal and noise contributions.

It is also convenient to define the correlation matrix of open circuit voltages at the array element termi-
nals, which from (8.4) is related to the receiver output voltage correlation matrix by

Rv = QRvocQ
H (8.23)
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With this relationship, the signal and noise contributions can be characterized by the open circuit voltage
correlation matrices Rsig,oc, Rext,oc, Rloss,oc, and Rrec,oc. Since the receiver noise is introduced after the
array element terminal reference plane, Rrec,oc is an equivalent correlation matrix in the same sense as the
equivalent noise concept introduced in Section 2.5.

The goal now is to develop expressions for each of the signal and noise correlation matrices in terms
of the signal and noise environment and the array electrical characteristics as represented by the embedded
element patterns and mutual impedance matrix. This treatment will uncover some fascinating connections
between array radiation properties and the noise response.

8.4.1 Signal of Interest

For a single, stationary, time harmonic point source, the array output voltages are constant phasors, so the
signal correlation matrix is

Rsig = E[vsigv
H
sig] = vsigv

H
sig (8.24)

Since the field arriving at the array from a distant point source is approximately a plane wave, we can use
(8.4) and (8.10) to express the signal correlation matrix in terms of the embedded element patterns as

Rsig = c2S
sigQEp(r)E

H
p (r)︸ ︷︷ ︸

Rsig,oc

QH (8.25)

where c2 = 2η|c1|2, Ssig is the incident power density of the signal at the location of the array, and r is a
point such that r̂ is in the direction Ω. This shows that the correlation matrix for a single point source is a
rank one matrix. It can be seen that Rsig,oc is proportional to the matrix Bp defined in (7.17). If interference
is produced by point radiators, then Rint is a sum over terms of the same form as (8.24).

8.4.2 External Noise

External thermal noise can be modeled in terms of a scene brightness temperature distribution T (Ω). We
wish to obtain an expression for Rext in terms of T (Ω). T (Ω) may represent the physical temperature of
the ground and objects around the array, or for an environment with many interferers T (Ω) can represent
an effective interference brightness temperature. If T (Ω) is constant, the noise environment is spatially
isotropic. This particular noise distribution will have special importance in Chapter 8.

Because the noise consists of a distribution of randomly polarized incoming plane waves from all angles
rather than a single plane wave, (8.9) must be modified by integrating over all angles and both polarizations
must be included to obtain the received open circuit voltage noise at the mth element. To avoid having to
repeat the transfer matrix Q in every expression, it is convenient here to use open circuit voltages. The open
circuit voltage signal due to external noise at the mth element terminals is

vext,oc,m(t) = c1

∫
E

ext
(Ω) · Em(r) dΩ

where c1 is defined in (8.11) and Eext
(Ω) is the incident electric field from the thermal noise source at

spherical angle of arrival Ω from the point of view of the array. The voltage correlation matrix has elements
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given by

Rext,oc,mn = E

[
|c1|2

∮
E

ext
(Ω) · Em(r) dΩ

∮
E

ext∗
(Ω′) · E∗

n(r) dΩ
′
]

= |c1|2
∮ ∮

E
[
E

ext
(Ω) · Em(r)E

ext∗
(Ω′) · E∗

n(r)
]
dΩ dΩ′

= |c1|2
∮ ∮

E
[
(Eext

θ (Ω)Em,θ + Eext
ϕ (Ω)Em,ϕ)(E

ext
θ (Ω′)En,θ + Eext

ϕ (Ω′)En,ϕ)
∗] dΩ dΩ′

From the physics of blackbody radiation, the noise field correlations are

E
[
Eext
θ (Ω)Eext∗

θ(Ω
′)
]
= E

[
Eext
ϕ (Ω)Eext∗

ϕ(Ω
′)
]
=

2ηkBT (Ω)B

λ2
δ(Ω− Ω′)

E
[
Eext
θ (Ω)Eext∗

ϕ(Ω
′)
]
= 0

The delta function implies that the thermal noise waveforms radiated by two different sources are uncorre-
lated. Using these expressions and evaluating one of the integrals over spherical angle leads to

Rext,oc,mn = |c1|2
2ηkBB

λ2

∮
T (Ω)Em(r) · E

∗
n(r) dΩ

=
8kBB

η|I0|2

∮
T (Ω)Em(r) · E

∗
n(r) r

2dΩ (8.26)

If we define a brightness temperature weighted overlap integral matrix with elements given by

AT (Ω),mn =
1

2η

∮
T (Ω)Em(r) · E

∗
n(r) r

2dΩ (8.27)

then the external noise correlation matrix becomes

Rext,oc =
1

|I0|2 16kBBAT (Ω) (8.28)

Using the transfer matrix Q, the correlation matrix is transformed to

Rext =
1

|I0|2 16kBBQAT (Ω)Q
H (8.29)

when referred to receiver output voltages.

Isotropic external noise response.

A case of particular interest is an isotropic external brightness temperature distribution T (Ω) = Tiso. For
this thermal noise distribution, (8.28) becomes

Rext,iso,oc =
1

|I0|2 16kBTisoBA (8.30)

where A is the pattern overlap matrix defined in (7.11). In view of the relationship (7.46), this can be written
as

Rext,iso,oc = 8kBTisoBRrad (8.31)

where Rrad is defined in (7.47) to be Re[ZA] − RA,loss . For a lossless array, these results imply that the
pattern overlap matrix A, the array mutual resistance matrix Re[ZA], and the open circuit isotropic noise
voltage correlation matrix Rext,iso,oc are all identical up to a scale factor.
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Figure 8.2: Amplifier noise equivalent circuit model.

8.4.3 Loss Noise

Thermal noise due to losses in the array can be inferred from Twiss’s theorem [7]. If the array is in thermal
equilibrium with an isotropic noise environment (i.e., the physical temperature Tp equal to the external
brightness temperature Tiso), then the open circuit thermal noise correlation matrix at the antenna terminals
is

Rt,oc = 8kBTisoBRe[ZA] (8.32)

This correlation matrix includes contributions both from the external isotropic brightness temperature dis-
tribution and ohmic losses in the array. By subtracting Rt,oc from Rext,iso,oc, we find that the loss noise
contribution is

Rloss,oc = 8kBTpBRA,loss (8.33)

This expression may be notationally confusing, because the voltage correlation matrix on the left side and
the mutual loss resistance matrix on the right side are both denoted by a matrix symbol R. But in view of the
close connection between noise correlation matrices and mutual resistances, perhaps this chance collision
of the nomenclature from network theory and array signal processing is not such a bad thing.

8.4.4 Receiver Noise

For an active array with amplifiers directly attached to each element, receiver noise is dominated by noise
from the front end amplifiers. For a microwave amplifier, the noise contributed by the amplifier depends
strongly on the impedance of the source attached to the amplifier input. Amplifier noise can be modeled
with voltage and current noise sources at the input port of an ideal, noiseless amplifier as in Figure 8.2.
The amplifier noise is then determined by the source impedance together with the noise parameters of the
amplifier, which are the amplifier noise correlation admittance Yc, the voltage noise RMS density v̄n,R
(V/

√
Hz), and the current noise RMS density īn,R (A/

√
Hz). The correlation admittance Yc measures the

degree of correlation of the voltage and current noise sources, and is defined by

in,R = Ycvn,R + iu,R (8.34)

where iu,R and vn,R are uncorrelated. Another useful parameter is the amplifier noise resistance,

RN =
v̄2n,R
4kBT0

(8.35)

where T0 = 290K. The equivalent noise temperature is strongly dependent on the impedance of the source
that drives the amplifier input. The lowest possible value of the equivalent noise temperature is

Tmin =
v̄n,Rīn,R
2kB

(√
1− c2i + cr

)
(8.36)
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where the voltage and current noise correlation coefficient c = cr + jci is defined by Yc = c̄in,R/v̄n,R. The
optimal source admittance that minimizes the noise contributed by the amplifier is

Yopt =
Tmin

2RNT0
− Yc (8.37)

For any other source admittance, the equivalent amplifier noise temperature is larger than Tmin. The optimal
source impedance parameter is not in general the same as the amplifier input impedance, but to maximize
the power gain of the amplifier and minimize the effect of noise introduced by later components in the
receiver chain, amplifiers are typically designed so that the optimal source impedance is close to the input
impedance.

Measuring all of the amplifier noise parameters (Yc, īn,R, and īn,R) requires specialized equipment.
For many commercial amplifiers, the optimal source impedance is close to 50Ω, and only the minimum
noise temperature Tmin, or equivalently the amplifier noise figure, are given in the product specifications.
Amplifier noise can also be characterized in terms of forward and reverse noise wave amplitudes at the
amplifier input or output port or other quantities that can be measured. Transformations between various
sets of noise parameters are found in J. Engberg and T. Larsen, Noise Theory of Linear and Nonlinear
Circuits [New York: Wiley, 1995].

For an array with multiple amplifiers, if we arrange the noise parameters for the N amplifiers into
diagonal matrices Yc, Vn,R, and In,R, then network theory can be used to show that the amplifier noise
correlation matrix is

Rrec,oc = 2B
(
V2
n,R + ZAYcV

2
n,R +V2

n,RY
H
c Z

H
A + ZAI

2
n,RZ

H
A

)
(8.38)

in terms of the amplifier noise parameters and the array mutual impedance matrix.
This result includes the effect of mutual coupling in the array through the nondiagonal matrix ZA. We

have neglected signal coupling between the amplifiers themselves by making Yc, Vn,R, and In,R diagonal
matrices, but this is normally a good assumption in microwave systems. The noise emitted by each amplifier
is assumed to be uncoupled with that of other amplifiers, but the reverse noise at the input port of one
amplifier enters into the array and couples to other elements, and enters the forward signal paths of the other
array elements, which makes Rrec a nondiagonal matrix.

8.5 Fundamental Noise Theorem for Phased Arrays

The results in the previous section on the noise response of an array receiver create an important and in-
teresting connection between the radiation properties, noise response, and network parameters of an array
antenna. Combining (8.31) and (8.32) leads to

Rt,oc =
1

|I0|2 16kBTisoBA+ 8kBTpBRA,loss (8.39)

where RA,loss is the portion of the array mutual impedance matrix ZA that is due to ohmic and dielectric
losses in the array elements and is given by (7.47). This result holds under assumption that the array elements
are reciprocal (although system components after the array elements may not be reciprocal). We will refer
to this result as the fundamental noise theorem of array receivers.

The left hand side of (8.39) is the correlation matrix of the noise voltages that appear at the element ports
of an array when loaded with open circuits and the array is in an isotropic noise environment at temperature
Tiso and with the array at temperature Tp. This correlation matrix consists of two contributions, one from
the external environment and the other from losses in the array elements. The external contribution can be
given in terms of the array element pattern overlap integral matrix, and the loss term is given in terms of the
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part of the array mutual impedance matrix caused by losses in the array elements. This result combines all
aspects of array theory—the signal correlation matrix formulation, antenna quantities through the pattern
overlap matrix, and network theory via the mutual impedances.

8.6 Array Gain (SNR Gain)

In addition to the receiving pattern directivity defined in Section 8.2.1, another way to measure the perfor-
mance of a receive array is the improvement in signal to noise ratio relative to a reference antenna. Since
gain scale factors in the array signal paths affect signal and noise in the same way, the SNR at the output of a
beamformer is independent of gain scale factors common to each element signal path, and SNR can be used
to characterize the ability of an array to receive a particular signal in terms of the ratio of the signal power
to the received noise at the beamformer output.

Because the SNR at the beamformer output depends on the intensity of the incident field, it is convenient
to normalize the output SNR by the SNR obtained with a reference antenna for the same incident field and
noise environment, to obtain a figure of merit that is intrinsic to the array. This is the array gain,

Ga =
SNRout

SNRref
(8.40)

where SNRout is the signal to noise ratio at the beamformer output and SNRref is the signal to noise ratio
at the output of a reference antenna, which can be chosen to be one of the array elements in isolation or an
isotropic antenna. For obvious reasons, this quantity is also be called SNR gain. The name “array gain” for
this quantity is used by the signal processing community, even though it is generally different from antenna
gain or directivity. We will see shortly, however, that under certain conditions array gain is actually equal to
directivity.

From the definition, it can be seen that the array gain not only depends on the response of the array in
the signal direction, but also on the sources of noise in the system. In general, the noise consists of thermal
radiation from warm objects around the antenna, thermal noise from the antenna elements, and receiver
noise due to the amplifiers and other components connected to the output port of the array elements. If these
noise sources change, then the array gain changes. Therefore, the array gain depends on the characteristics
of the various sources of system noise.

When designing an array it is sometimes convenient to use figures of merit that are intrinsic to the array,
so it is common to compute the array gain assuming a generic type of noise model. Two possible noise
models that are natural choices include an isotropic external thermal noise distribution and independent,
identically distributed noise at each element, or spatially white noise. We will show that the array gain with
the former noise model (isotropic noise gain) is identical to the partial directivity of the array.

8.6.1 Isotropic Noise Gain

With certain choices for the reference antenna and noise model, it can be shown that array gain and directiv-
ity are equal. We will choose an isotropic antenna as the reference, and assume that the noise consists only
of isotropic thermal radiation arriving from all angles around the array. This noise model neglects receiver
noise, ohmic losses in the antenna elements, and other noise sources. Since the noise model consists of
spatially isotropic thermal noise, the resulting array gain can be called the isotropic noise gain.

If all other noise sources except for noise due to an external isotropic brightness temperature distribution
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are neglected, then the output SNR due to a plane wave signal arriving from the spherical angle Ω is

SNRout =
wHRsig(Ω)w

wHRext,isow
(8.41)

=
λ2r2Ssig

kBTisoB

wH
ocBp(Ω)woc

wH
ocAwoc

(8.42)

The reference SNR is given by the SNR at the terminals of an isotropic antenna. Using (2.118), the signal
power is

Psig = Ssig λ
2

4π
(8.43)

From (2.136), the noise power due to an isotropic external brightness temperature distribution is

Pnoise = kBTisoB (8.44)

The SNR at the terminals of the isotropic antenna is

SNRref =
λ2Ssig

4πkBTB
(8.45)

Dividing (8.42) by (8.45) leads to the array gain for isotropic noise,

Ga(Ω) =
4πr2wH

ocBp(Ω)woc

wH
ocAwoc

(8.46)

This is identical to the partial directivity (7.19). If the polarization p̂ of the incident field is aligned with the
antenna polarizations of the array elements, then the distinction between partial directivity and directivity
disappears and the isotropic noise gain in (8.46) is identical to the directivity.

8.6.2 White Noise Gain

Another common choice for the noise model is to simply approximate the noise as independent, identically
distributed noise sources for each array element, or spatially white noise. This is often used in the array
signal processing literature when the details of the array system are not important in the analysis. In this
approximation, the noise correlation matrix is

Rn,oc = σ2nI (8.47)

and the noise power is
Pnoise =

∑
m,n

w∗
oc,mwoc,nσ

2
n = σ2nw

H
ocwoc (8.48)

where σ2n is the variance of the open circuit noise voltage at one receiver output. The output SNR is

SNRout =
c2S

sigwH
ocBp(r)woc

σ2nw
H
ocwoc

(8.49)

If we take the first array element as the reference, then

SNRref =
c2S

sigBp,11(Ω)

σ2n
(8.50)
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The white noise gain is

Ga =
1

Bp,11

wH
ocBp(r)woc

wH
ocwoc

(8.51)

If we instead use an isotropic antenna as the reference, the white noise gain becomes

Ga =
4πr2

Pel

wH
ocBp(r)woc

wH
ocwoc

(8.52)

This result can also be arrived at from the partial directivity by assuming that the array elements are identical
and far enough apart that the off-diagonal pattern overlap matrix elements are zero, so that A = PelI.

8.7 Antenna Terms for Active Receiving Arrays

The signal processing figure of merit of SNR gain or array gain can be easily applied to any receiver system,
no matter how complicated. All that is required is an identifiable output voltage or power and a measure of
the signal and noise contributions at the output, so that the SNR at the output of the receiver system can be
quantified. The directivity of a receiver is also well defined and can be measured (See Section 8.2).

Other antenna terms, such as radiation efficiency or gain, are more challenging to apply to complex
receiver systems. For arrays with active elements such as amplifiers or digitally beamformed arrays with
analog to digital converters, the system is nonreciprocal and cannot be operated as transmitters. There is no
obvious way to define an equivalent radiated power or measure the radiation efficiency. The standard for
antenna terms now includes terms that address these limitations.

The 2013 update of the IEEE Standard for Definitions of Terms for Antennas [2] includes several new
terms that clarify quantities like efficiency, gain, and noise temperature for active array antennas. The key
to understanding gain, radiation efficiency, and noise temperature for complex receiving antenna systems is
noise theory. We have already seen in Section 8.5 that for arrays of reciprocal antenna elements, no matter
how complicated the system, there is a close connection between the fields radiated by a transmitting array
and the noise received by the same array. The relevant antenna terms are

• Isotropic noise response

• Active antenna available gain

• Active antenna available power

• Receiving efficiency

• Noise matching efficiency

• Noise temperature

• Effective area

We will review each of these antenna terms and show how they resolve the issues associated with character-
izing performance for array receiver systems.

8.7.1 Isotropic Noise Response

We have already seen the important special case of isotropic external brightness temperature distribution
in Section 8.4.2. The isotropic noise response is similar to the response of an array when in an isotropic
external brightness temperature distribution, but includes loss noise as well. Definitions of antenna quantities
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for active antenna systems all rely on the receiver’s isotropic noise response, so this figures heavily into the
treatment of array receivers and will be treated in greater depth in this section.

The IEEE standard definition of the isotropic noise response of a receiver is as follows:

isotropic noise response. For a receiving active array antenna, the noise power at the output of a
formed beam with a noiseless receiver when in an environment with brightness temperature distri-
bution that is independent of direction and in thermal equilibrium with the antenna.

For a receiving array, the isotropic noise response can be modeled theoretically using the correlation matrix
formulation. The array output noise voltage correlation matrix given by (8.21) in general consists of the
contributions

Rv = Rsig +Rext +Rloss︸ ︷︷ ︸
Rt

+Rrec +Rint (8.53)

The isotropic noise response can be found from the external noise and loss noise correlation matrix terms,
which we denote as the thermal noise correlation matrix Rt. For an arbitrary external environment tem-
perature distribution and antenna temperature, the thermal noise correlation matrix is given by (8.39), the
fundamental noise theorem of array receivers.

The isotropic noise response is obtained under the conditions that the external environment has a constant
brightness temperature distribution Tiso and the array is thermal equilibrium with the environment, so that
the physical temperature is also Tiso. The isotropic thermal noise correlation matrix in this scenario becomes

Rt,iso = Rext,iso(Tiso) +Rloss(Tiso) (8.54)

where the argument is a reminder that the external environment and the antenna array are at temperature
Tiso.

By Twiss’s theorem (8.32), the isotropic thermal noise correlation matrix when referenced to open cir-
cuit voltages at the array element ports is proportional to the array mutual resistance matrix Re[ZA]. This
demonstrates that the open circuit isotropic noise correlation matrix is intrinsic to the antenna array itself,
and the dependence of Rt,iso on the electronics after the array elements is through the system transfer matrix
Q defined in (8.4).

From the isotropic noise correlation matrix, the beam isotropic noise response can be expressed as

Pt,iso = wHRt,isow (8.55)

This provides a way to compute the isotropic noise response if the isotropic noise correlation matrix is
known, and gives us a way to understand the isotropic noise response in terms of the various noise contribu-
tions to the array output voltage signals.

The isotropic noise response can be measured in several ways. The array mutual impedances can be
measured using a network analyzer. By Twiss’s theorem, this provides the open circuit isotropic noise
correlation matrix. The system transfer matrix Q from the antenna port open circuit reference plane to
the array output voltage reference plane must then be measured or modeled to obtain the isotropic noise
correlation matrix at the array outputs after electronics. The beamformer weights can then be applied to find
the isotropic noise response (8.55).

Another approach is to create an isotropic brightness temperature distribution and measure the isotropic
noise response directly. For high frequency antennas that are small in size, it is possible to create an artificial
black body using microwave absorber cooled with liquid nitrogen or other type of cryogenic system to
maintain constant temperature. As long as the absorber fills the majority of the angular field of view of the

Warnick & Jensen February 22, 2017



ECEn 665: Antennas and Propagation for Wireless Communications 108

antenna where the gain is substantial, it appears to be an isotropic brightness temperature distribution from
the perspective of the antenna.

For large array systems, the cool microwave sky provides an approximate isotropic noise field. The
atmosphere, Milky Way galaxy, and the cosmic background radiation together create a brightness tempera-
ture of about 4-5 K at L-band frequencies. A ground shield must be used to limit radiation from the much
warmer ground, terrain features, trees, or buildings in the deep sidelobes of the antenna system under test
(AUT).

With either of these measurement setups, the isotropic noise response of an array must be separated
from receiver noise. This can be done using the Y-factor method. The Y-factor method is normally used
to measure the noise figure of microwave devices, with a connectorized noise source that can be switched
between two noise levels. To measure the isotropic noise response of an antenna, a spatial noise field with
two temperatures is required, rather than a connectorized noise field.

The AUT is illuminated with an isotropic noise field at two different temperatures, Thot and Tcold. These
are referred to as hot and cold loads. This is done using absorber at two different temperatures, or by using
the night sky as the cold load and microwave absorber at ambient temperature. The beam output power is
measured twice, with the cold load and hot load. The measured output powers are

Pcold = Pext,iso
Tcold
Tiso

+ Ploss + Prec (8.56a)

Phot = Pext,iso
Thot
Tiso

+ Ploss + Prec (8.56b)

where Pext,iso is similar to (8.55) but is external noise due to the isotropic noise field but does not include
noise due to antenna losses. The antenna in the measurement setups is normally not at thermal equilibrium
with the external noise field, so Ploss represents loss noise with the antenna at its physical temperature,
not Tcold or Thot. This means that the loss contribution to the isotropic noise response cannot be directly
measured, and must be neglected, measured another way, or estimated using simulations. The scale factors
Tcold/Tiso and Thot/Tiso change the effective external brightness temperature in the first terms of (8.56)
from Tiso to the hot and cold temperatures.

The ratio of the hot and cold output powers is referred to as the Y factor,

Y =
Phot

Pcold
(8.57)

Subtracting the measured output powers with hot and cold loads and inserting the Y factor leads to

Pext,iso = Pcold(Y − 1)
Tiso

Thot − Tcold
(8.58)

We can also solve for the loss and receiver noise contributions,

Ploss + Prec = Pcold
Y Tcold − Thot
Thot − Tcold

(8.59)

Expressions very similar to the above formulas can be derived for the external isotropic noise, loss noise,
and receiver noise array output voltage correlation matrices. If the array output voltages can be correlated
before combining in the beamformer, then this same measurement setup can be used to obtain the external
isotropic noise correlation matrix.

8.7.2 Active Antenna Available Gain

The power output of an active array receiver includes essentially arbitrary gain scale factors. These include
amplifier gain, loss in connecting transmission lines, conversion loss in mixers, transfer functions of analog
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to digital converters, and a common scale factor in the array beamformer weights. This makes the absolute
level of the signal at the output of a beamforming array almost meaningless. The level must be scaled to
be within the dynamic range of components in the analog and digital portions of the signal chain for each
channel, but other than that, the output level is meaningless.

To remove the voltage gain scale factors in the array system and separate out the antenna gain of the
array, we use the isotropic noise response of the active array to define an active antenna available gain:

active antenna available gain. For a receiving active array antenna, the ratio of the isotropic noise
response to the available power at the terminals of any passive antenna over the same bandwidth and
in the same isotropic noise environment.

The available power at the terminals of any passive antenna in an environment with brightness tempera-
ture Tiso over a bandwidth B is given by kbTisoB. The active antenna available gain is therefore

Gav
rec =

Pt,iso

kbTisoB
(8.60)

This quantity can be used to scale the beam output power for an active array so that it represents the available
power at the terminals of an equivalent passive antenna. This is the active antenna available power.

8.7.3 Active Antenna Available Power

With the active antenna available gain, the beam output power can be scaled to remove system gain factors so
that represents the available power at the terminals of an equivalent passive antenna with the same receiving
pattern. The active antenna available power is defined to be

active antenna available power. For a receiving active array antenna, the power at the output of a
formed beam divided by the active antenna available gain.

If we consider only the contribution to the antenna output power due to the signal of interest, the active
antenna available signal power is

P av
sig =

Psig

Gav
rec

(8.61)

where Psig = wHRsigw.
The relationship developed earlier between the isotropic noise correlation matrix and the array mutual

resistance matrix can be used to show that the maximum active antenna available power over all possible
beamformer weights is equal to the available power at the array element terminals. For a single point source,
Rsig = Qvsig,ocv

H
sig,ocQ

H , where vsig,oc is a vector of the open circuit voltages induced by the signal of
interest at the array element terminals. With (8.32), the beam equivalent available power due to the signal
of interest is

P av
sig =

wH
ocvsig,ocv

H
sig,ocwoc

8wH
ocRe[ZA]woc

(8.62)

where woc = QHw. Following the treatment in Section 7.6.2, the beamformer weight vector that max-
imizes this quadratic form can be shown to be woc = Re[ZA]

−1vsig,oc. The resulting active antenna
available signal power with these beamformer weights is

P av,max
sig = 1

8v
H
sig,ocRe[ZA]

−1vsig,oc (8.63)
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For a reciprocal array (ZA = ZTA), this expression can be recognized as the signal power that would be
delivered by the array to a conjugate matched multiport load network with mutual impedance matrix ZL =
ZHA attached to the array element terminals. This result provides an intuitive physical meaning for active
antenna available power. The maximum active antenna available power is the actual available power at the
array element ports, considering the array as a multiport network source.

8.7.4 Receiving Efficiency

For transmitting antennas, the radiation efficiency is the ratio of the power radiated by the antenna to the
power accepted by the antenna. This term is difficult to apply to complex, active antennas that include gain
in multiple signal paths. There is no way to operate such a system as a transmitter to measure accepted
power or the radiated power. Still, the ohmic and dielectric losses that absorb some of the power accepted
by a transmitting antenna do have a detrimental effect on receiving antennas. The losses attenuate the
received signal of interest, but that can be compensated for simply by adding gain to the signal path after the
antenna. More importantly, the losses add thermal noise, which reduces the SNR at the receiver output. The
IEEE standard definition for receiving efficiency measures this effect for active receiving antenna systems.
For simple, passive antennas that operate as both receivers and transmitters, the radiation efficiency and
receiving efficiency are equal.

receiving efficiency. For a receiving active array antenna, the ratio of the isotropic noise response
with noiseless antenna to the isotropic noise response, per unit bandwidth and at a specified fre-
quency.

NOTE—Equivalent to radiation efficiency for a passive, reciprocal antenna.

From this definition, the receiving efficiency is

ηrec =
Pext,iso

Pt,iso
=

Pext,iso

Pext,iso + Ploss
(8.64)

where the beam output noise power due to antenna losses, Ploss = wHRlossw, is measured under the condi-
tion that the antenna and isotropic environment are in thermal equilibrium, so that the physical temperature
Tp of the antenna is equal to Tiso. This ratio measures the increase in noise at the receiver output due to
antenna losses. If the antenna elements are lossless, Ploss = 0, and the receiving efficiency is unity. For
highly lossy elements, the noise added by losses is large in comparison to the external noise contribution at
the receiver output from the isotropic thermal environment, and the receiving efficiency is close to zero.

It is interesting to compare receiving and radiation efficiency for a simple passive antenna. For a passive
antenna with conjugate matched load and loss factor L, from (2.139) the isotropic noise response is

Pt,iso = kBB
Ta
L

+ kBB
(L− 1)Tp

L
(8.65)

with the external and antenna physical temperatures equal, so that Ta = Tp = Tiso. The first term is
the power at the antenna output port due to the external thermal noise, and the second term is the noise
contributed by antenna losses. The receiving efficiency is therefore

ηrec =
kBB

Tiso
L

kBB
Tiso
L + kBB

(L−1)Tiso
L

=
1

L
(8.66)
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As discussed in Section 2.5.4, the loss factor of a lossy antenna is the inverse of the radiation efficiency, so
that L = 1/ηrad, which shows that ηrec = ηrad, and as expected the radiation and receiving efficiencies are
equal for passive, reciprocal antennas.

We can develop a connection between receiving efficiency and radiation efficiency for array antennas
using the overlap integral formulation. Radiation efficiency is defined for a transmitter as the ratio of radiated
power to accepted power, which in the overlap integral formulation (7.51) is

ηrad =
2

|I0|2
wHAw

wHRe[ZA]w
(8.67)

Assuming that the array elements are reciprocal, then inserting (8.30) and (8.32) to convert from a power
formulation to a noise formulation shows that (8.67) for the radiation efficiency can be expressed as

ηrad =
wHRext,iso,ocw

wHRt,iso,ocw
(8.68)

If the array is operated as a receiver instead of a transmitter, and the receiver open circuit referenced beam-
former weights woc are equal to the transmit beamformer weights w, then the numerator and denominator
of (8.68) are equal to the received external isotropic noise power Pext,iso and total isotropic noise power
Pt,iso, respectively. By comparison with definition (8.64) of receiving efficiency the radiation and receiving
efficiencies are therefore equal if the transmit and receive beamformer weight vectors are equal.

Based on the arguments in Section 8.1.1, this equivalence between radiation and receiving efficiencies
holds for arrays of passive, reciprocal elements, even if components in the signal paths after the receiving
array elements are nonreciprocal (e.g., amplifiers, mixers, etc.). If the antenna elements themselves include
nonreciprocal materials, the radiation and receiving efficiency of the array may be different.

8.7.5 Active Antenna Effective Area

The passive equivalent available power defined in (8.61) allows the effective area of an active antenna to be
defined in the same way as for a passive antenna. This is included as the third note under the definition of
effective area:

effective area (of an antenna) (in a given direction). In a given direction, the ratio of the available
power at the terminals of a receiving antenna to the power flux density of a plane wave incident on the
antenna from that direction, the wave being polarization matched to the antenna. See: polarization
match.

NOTE 1—If the direction is not specified, the direction of maximum radiation intensity is implied.

NOTE 2–The effective area of an antenna in a given direction is equal to the square of the operating
wavelength times its gain in that direction divided by 4π.

NOTE 3—For an active antenna, available power is the active antenna available power.

Based on this definition, the effective area of an active antenna is

Ae =
P av
sig

Ssig
(8.69)

where the signal of interest is a plane wave with power flux density Ssig and polarization matched to the
beam such that Ae is at a maximum. For an arbitrarily polarized incident field, partial gain and polarization
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efficiency can be defined according to the usual conventions. By inserting expressions for the power and
active antenna available power for a beamforming array, the effective are can be written as

Aeff =
Psig,a

Ssig
=
kBTisoB

Ssig

wHRsigw

wHRtw
(8.70)

in terms of the array output voltage covariance matrices. For a lossless array, Rt = Rext,iso, in which case
the ratio of the signal response to the isotropic noise response in this expression is the same as the ratio in
the SNR gain with isotropic noise model given by (8.41), which shows that the antenna gain of an active
array is the same as the isotropic noise gain.

We can use reciprocity to show that (8.69) is consistent with the standard definition for effective re-
ceiving area. For the array used as a transmitter with input currents at each element port arranged into the
column vector i, the partial directivity is given by (7.19) as

Dp(Ω) =
4πr2iHBp(r)i

iHAi
(8.71)

By inserting (8.25) and (8.30) for the received signal noise correlation matrix and isotropic noise correlation
matrix, the partial directivity can be expressed for the receiving array as

Dp =
4πkBTisoB

λ2Ssig

wH
ocRsig,ocwoc

wH
ocRext,iso,ocwoc

(8.72)

where the open circuit referenced beamformer weights are woc = i∗, or equal to the complex conjugates
of the input currents used to excite the array as a transmitter. Comparing (8.72) and (8.70) and using the
definition of receiving efficiency shows that

Aeff =
λ2

4π
ηrecDp (8.73)

which is equivalent to the classical result (2.118) for lossless passive antennas. This derivation shows the
consistency of the active antenna effective area with the antenna terms for passive antennas.

As expected for an array receiver, the effective area of the array depends on the beamformer coefficients.
By analogy with (7.38), the beamformer weights that maximize the effective receiving area are given by

woc = R−1
t Ep ∼ Re[ZA]

−1Ep (8.74)

Since antenna figures of merit are independent of a common scale factor in the beamformer coefficients,
both expressions on the right of (8.74) represent essentially the same formed beam. For a lossless array,
because the overlap matrix and the mutual resistance matrix are proportional, this reduces to (7.38). We
can also determine beamformer weights that maximize sensitivity in a similar way. Since this beamformer
depends on the external noise environment, however, it is not intrinsic to the array itself, but depends on
external stimuli and is said to be data-dependent. This type of statistically optimal beamformer will be
considered further in Chapter 13.

Comparing the results in Section 8.2.1, Section 8.6.1, and this section shows that for a reciprocal array
of antenna elements, if the array excitation currents i in the transmit case and the open circuit referenced
beamformer combining coefficients w∗

oc in the receive case are equal, then the directivity, isotropic noise
gain, and active antenna effective area are all essentially the same quantity. The connecting link between the
transmit and receive cases is that in both operating modes, we model the array in terms of the same embedded
element radiated field patterns. The embedded element patterns are used to get the radiated power density
and radiated power in the transmit case, and the signal correlation matrix and isotropic noise correlation
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matrix in the receive case. The equivalence between measures of gain and directivity for the receive and
transmit cases boils down to the fact that the integral one evaluates to obtain total radiated power in (7.11)
is the same as the integral over received field arrival angle in the receiving pattern directivity (8.12) and the
integral over angle in the external noise response (8.27). In the receiving pattern directivity, a plane wave
from many angles is used to probe the antenna response over angle and create the integral, whereas in the
isotropic noise gain and the active antenna effective area, thermal noise arriving from all angles effectively
performs the same integration over the element patterns.

8.7.6 Active Antenna Noise Temperature

In Section 8.7.3, we defined an equivalent available power that represents the output power of an active
antenna as if it were at the terminals of the array antenna elements. The full receiver system may be active
and nonreciprocal, but we have assumed throughout this treatment that the antenna elements themselves
are always passive and reciprocal. The value of having a meaningful equivalent passive available power
for active antennas is that this provides a way to refer power at the antenna system output to the source at
the input to the system. The source in an active antenna system is the array element multiport network. In
the previous section, we considered the example of referring signal power to the array multiport network
source. Referring noise power to the source is even more important, as this is fundamental to the definition
of equivalent noise temperature. For an active antenna system, noise powers can be referred to equivalent
source temperatures by applying the second note in the IEEE standard definition of noise temperature:

noise temperature of an antenna. The temperature of a resistor having an available thermal noise
power per unit bandwidth equal to that at the antenna’s output at a specified frequency.

NOTE 1—Noise temperature of an antenna depends on its coupling to all noise sources in its envi-
ronment, as well as noise generated within the antenna.

NOTE 2—For an active antenna, the temperature of an isotropic thermal noise environment such
that the isotropic noise response is equal to the noise power at the antenna output per unit bandwidth
at a specified frequency.

This definition can be applied to the entire system noise power, or it can be applied separately to indi-
vidual noise contributions that one would like to measure, understand, or optimize in a design process. The
definition of active antenna noise temperature implies that the equivalent system noise temperature including
all noise contributions is

Tsys = Tiso
Pn

Pt,iso
(8.75)

This is the temperature of the antenna and isotropic noise environment that would produce a power out-
put at the antenna system output equal to the system noise power Pn = wHRnw. Active antenna noise
temperature can be related to active antenna available gain. Using (8.60) in (8.75) shows that

Pn = kBBTsysG
av
rec (8.76)

Based on the definition (2.123) of equivalent temperature, this can be seen to be exactly the noise power we
would expect at the output of a system with gain Gav

rec.
The definition of active antenna noise temperature can also be applied to individual components of the

system noise due to external thermal sources, antenna losses, or receiver electronics. The beam equivalent
receiver noise temperature, for example, is

Trec = Tiso
Prec

Pt,iso
(8.77)
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where Prec = wHRrecw. The equivalent noise temperature due to antenna losses is

Tloss = Tiso
Ploss

Pt,iso
(8.78)

The noise power due to losses is the difference between the total thermal noise power Pt,iso and the external
noise power Pext,iso, but scaled so that the effective temperature of the antenna is Tp, rather than Tiso as in
the definition of the isotropic noise response. This implies that the loss noise is

Ploss =
Tp
Tiso

(Pt,iso − Pext,iso) (8.79)

Inserting this into (8.78) and using the definition of receiving efficiency leads to

Tloss = (1− ηrec)Tp (8.80)

which is identical to the second term of (2.140) for a passive antenna.
By convention, the equivalent system noise temperature and receiver noise temperature are referenced to

the antenna ports after antenna losses, whereas external noise sources are referenced to an antenna temper-
ature before losses (i.e., “to the sky”). This is analogous to the difference between (2.136) for the external
antenna noise temperature Ta of a passive antenna before losses and (2.140) for the antenna noise temper-
ature T ′

a after losses. The reference power for the external noise temperature does not include noise due to
antenna losses, so the equivalent external noise temperature

Text = Tiso
Pext

Pext,iso
(8.81)

has a slightly different form as compared to the system noise and receiver noise temperatures.
With these definitions for the receiver, loss, and external noise temperatures, it can be shown that the

system noise temperature (8.75) can be expressed as

Tsys = ηrecText + (1− ηrec)Tp + Trec (8.82)

where Tp is the physical temperature of the antenna, as before. This expression is identical in form to the
system temperature of a single port antenna (2.142), except that we have labeled the antenna temperature due
to external noise sources as Text. This is often denoted in the antenna literature as the antenna temperature
Ta, as in (2.136). The first two terms of this expression represent the total thermal noise due to external
sources and antenna losses, which was denoted in (2.140) as T ′

a.
We can also define the receiver noise figure of an active antenna using the isotropic noise response. The

noise figure of a microwave device was defined in Section 2.5 as the noise power at the output of the device
divided by the noise power at the output if the device were noise-free. Noise figure in principle depends
on the temperature of the input noise reference used to measure the noise increase due to a noisy system
component, so we must choose a reference input noise level. For microwave components with transmission
line ports, the reference input noise power level is kBT0B. For active antennas, where the “input” is a
spatial thermal noise distribution in the environment around the antenna, the angular distribution of the
thermal noise must also be specified. The IEEE standard for the noise temperature of an active antenna
implies that the reference angular distribution is isotropic. For an active array, the receiver noise figure is
therefore

F =
Pt,iso + Prec

Pt,iso
(8.83)

This quantity measures only the noise increase due to receiver electronics, and does not include the noise
increase due to antenna losses. Using (2.127) to convert this to an equivalent temperature shows that this
yields the same result as (8.77), which shows the consistency of the IEEE standard antenna terms for active
antennas with standard concepts from microwave systems theory.
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8.7.7 Equivalent Receiver Noise and Noise Matching

The antenna terms we have considered so far deal mainly with the external signals received by the antenna
(effective area) or noise caused by losses in the array elements (receiving efficiency). For an active antenna
receiver, the system noise includes contributions from receiver electronics as well. From the treatment of
Section 8.4.4, the noise added by a two-port network such as an amplifier connected to an antenna depends
on the impedance of the source. For a single antenna, since the effective area is defined with respect to
available power, the effective area or antenna gain are not influenced by the impedance of the amplifier or
other components connected to the antenna. The decrease in sensitivity caused by the receiver electronics
can be easily accounted for with the receiver noise figure. For an active antenna array, it is more difficult to
separate the properties of the antenna from the receiver noise figure, because the receiver has multiple signal
chains, and the array antenna output is not formed until after the receiver chains.

We have already seen in Section 8.7.6 how the active antenna available gain can be used to define a
meaningful equivalent noise temperature for any noise contribution at the active antenna output. This can
be applied to the receiver noise as well. For an active antenna system, using (8.75) the equivalent receiver
noise temperature is

Trec =
Prec

Pt,iso
(8.84)

In terms of array output voltage correlation matrices, the receiver noise temperature becomes

Trec = Tiso
wHRrecw

wHRtw
(8.85)

Using the results of Section 8.4.4 for the receiver noise correlation matrix, the receiver noise temperature
can be expressed in terms of open circuit voltage equivalent quantities as

Trec =
1

4kB

wH
oc

(
V2
n,R + ZAYcV

2
n,R +V2

n,RY
H
c Z

H
A + ZAI

2
n,RZ

H
A

)
woc

wH
ocRe[ZA]woc

(8.86)

where we have assumed that the front end amplifiers are the dominant contribution to the receiver noise and
have neglected noise from receiver components after the front-end amplifiers.

The receiver noise temperature can also be expressed in terms of active impedances or active reflection
coefficients looking from the input port of each amplifier into the array element ports. It can be shown that
[8]

Trec = Tmin + T0

∑M
m=1 |woc,m|2RN,m|Zact,m|2|Yact,m − Yopt,m|2∑M

m=1 |woc,m|2Ract,m

(8.87)

where Tmin is the minimum amplifier noise temperature parameter for the front-end amplifiers, RN,m is the
noise resistance parameter for the mth amplifier, Yopt,m is the optimal source impedance parameter for the
mth amplifier, Ract,m = Re [Zact,m], Yact,m = 1/Zact,m, and the receive array active impedances Zact,m

are defined as in (7.53) using the open circuit referenced beamformer weights woc.
This expression is comparable to the classical result for amplifier noise with a single antenna in terms

of the antenna impedance Zin = Rin + jXin or admittance Yin = 1/Zin and the amplifier noise parameters
Tmin, RN, and Yopt. For M = 1, (8.87) reduces to

Trec = Tmin + T0
RN|Zin|2|Yin − Yopt|2

Rin
(8.88)

which is equivalent to the usual formula for the equivalent noise temperature of a two-port amplifier with the
antenna as its driving source at the input port. This result uncovers another connection between transmit and
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receive arrays. For transmit arrays, active impedances control the amount of power accepted by each array
element from its feeding source, whereas for receive arrays, active impedances control the equivalent front-
end amplifier noise. In both cases, for array antennas it is active impedances, and not the self impedances
ZA,nn or the isolated impedance Zin that controls the matching performance of the system.

A subtle point for receiving arrays that is often misunderstood is the effect of a poor impedance match
between an antenna port and its terminating front-end amplifier. To understand this issue, it is important to
first understand the difference between impedance matching and noise matching.

For a transmitter, an impedance mismatch between the driving power amplifier and a transmitting an-
tenna means that less power is accepted by the array from the driver amplifiers than the available power.
This effect is not included in the antenna gain, but is included as a factor in the realized gain.

For a receiving array, what happens if the impedance looking into the antenna port is different from
the optimal source impedance parameter of the amplifier? The effective receiving area of the antenna is
not affected, because receiving area is defined for a conjugate matched load at the antenna port. Instead,
the equivalent receiver noise increases. By convention in microwave systems analysis, noise powers at the
output of a system are often referred to equivalent input noise powers. This is done for convenience, because
minimizing the input-referred equivalent noise maximizes SNR at the system output.

Equivalent receiver noise includes two effects that tend to decrease SNR—first, the reduction in signal
intensity due to the impedance mismatch, and second, the increase in noisiness of the amplifier due to a
difference between the source impedance and the amplifier’s optimal source impedance. If there is a poor
match between the antenna and amplifier, then only a small amount of signal couples from the antenna
output port to the amplifier input port, and the equivalent noise power referred to the source (the antenna)
must be very large to produce a given noise power at the amplifier output.

Both of these effects of mismatches, the decrease in coupled signal and the increase in amplifier noisi-
ness, are incorporated in the optimal source impedance parameter of the amplifier. The SNR at the amplifier
output is mathematically independent of the amplifier’s input impedance. What matters in determining the
SNR is not the amplifier input impedance, but the amplifier optimal source impedance parameter. In prac-
tice, the optimal source impedance and the input impedance of the amplifier are connected by the physical
properties of the transistor and other components in the amplifier, and in a well designed amplifier are close
in value, and typically as close to 50Ω as possible. Since the input impedance and the optimal source
impedance can be different, we refer to the process of matching the antenna to the amplifier optimal source
impedance for maximum SNR not as impedance matching, but as noise matching. In general, impedance
matching maximizes signal power transfer, whereas noise matching maximizes SNR.

A good impedance match between the antenna and amplifier, while it does not directly affect SNR at
the amplifier output, does produce a higher power level at the amplifier output, meaning a higher available
gain. With a high available gain for the first stage amplifier, later amplifiers do not need as much gain to
avoid reducing the SNR significantly.

To summarize, mismatches in a receiver system lead to reduced coupling of the signal of interest from
the antenna to the front end amplifier, as well as increased added noise caused by the amplifier. The impact
of these effects on SNR is reflected in the equivalent receiver noise.

To account for the effects of mismatch in receiver systems, some authors have defined a matching effi-
ciency parameter to account for poor impedance matching, similar to the mismatch factor that appears in the
realized gain used for transmitting antenna systems. Because noise and mismatch effects are closely inter-
twined in a receiver system, however, including mismatch effects in the equivalent receiver noise rather than
antenna gain is the most natural approach. This convention has been adopted in the latest IEEE Standard for
Antenna Terms under the term noise matching efficiency [2].
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8.7.8 Noise Matching Efficiency

The quality of the noise match between antenna elements and amplifiers or other receiver electronics in an
active antenna system is quantified by the noise matching efficiency. Noise matching efficiency is defined
as follows:

noise matching efficiency. For a receiving active array antenna, the ratio of the noise power con-
tributed by receiver electronics at the output of a formed beam, with receivers impedance matched to
the array elements for minimum receiver noise temperature, to the actual receiver electronics noise
power at the formed beam output, per unit bandwidth and at a specified frequency.

If the minimum equivalent noise temperature of each LNA and receiver chain is Tmin, then the receiver
noise temperature under perfect noise matching at each element port is equal to Tmin. From the definition,
this means that the noise matching efficiency of an active antenna system is

ηn =
Tmin

Trec
=
Tmin

Tiso

Pt,iso

Prec
(8.89)

The receivers and array element ports are ideally matched if the optimal source impedance parameter for
each LNA is equal to the active impedance at the corresponding array element port [9, 8]. In this case,
Trec = Tmin and the noise matching efficiency is unity. When the amplifiers and receiver chains are not
perfectly noise matched to the array at each port, the receiver noise temperature is greater than Tmin and
the noise matching efficiency is less than unity. Since active reflection coefficients depend on beamformer
coefficients, the noise matching efficiency for an active array depends on the beam steering direction.

The system noise temperature (8.82) can be expressed in terms of the noise matching efficiency as

Tsys = ηrecText + (1− ηrec)Tp + Tmin/ηn (8.90)

where Text is the equivalent external noise temperature and Tp is the physical temperature of the antenna
array elements.

As discussed in the previous section, noise matching efficiency includes both the effects of poor signal
coupling from the array elements to receiver electronics and the increased noisiness of the receivers as a
two-port network connected to each array element. Other antenna parameters, such as gain and effective
area, are defined with reference to conjugate matched loads and available power, and do not depend on the
impedance match to the receiver electronics. All mismatch effects in an active receiver system are contained
in the noise matching efficiency (8.89).

It is interesting to consider the case of very small receiver noise or very large external noise. In this case,
an impedance mismatch between the array elements and receiver electronics means that very little signal is
delivered to the receiver chains. Normally, if the signal level that couples into the front end amplifiers is
small, then the noise added by the receiver electronics would drastically reduce the SNR, but if the receivers
add very little noise in relation to the external noise, the SNR is unaffected. The SNR is dominated by the
ratio of signal to external noise, which is independent of the impedance matching at the junction between
the antenna elements and receiver chains, since the signal and external noise couple in the same way from
the antenna elements to the receiver chains. In other words, in the case of low receiver noise, the impedance
match does not affect SNR. There may be other reasons to have a good impedance match, such as reducing
the number of amplifier stages needed to achieve a given signal level at the receiver output, but in terms of
SNR, the impedance match only impacts SNR if the added receiver noise is significant.

Warnick & Jensen February 22, 2017



ECEn 665: Antennas and Propagation for Wireless Communications 118

8.8 Receiving Array Sensitivity

The antenna terms defined in the previous sections describe the performance of various aspects of an active
array antenna. Aperture efficiency, system noise, receiving efficiency, and other parameters all combine to
determine the overall sensitivity of the system. Using the beam equivalent system temperature (8.75) and
the effective receiving area (8.70), the receiver sensitivity figure of merit (2.144) for an array is

Aeff

Tsys
=
kBB

Ssig

wHRsigw

wHRnw
(8.91)

in units of m2/K. Sensitivity expressed as G/Tsys can be defined similarly. The ratio of quadratic forms
on the right-hand side is the SNR at the beam output, so it can be seeen that this expression is identical to
(2.144).

Inserting the definitions of receiving efficiency, aperture efficiency, external noise temperature, and re-
ceiver noise temperature shows that the sensitivity can be expressed as

Aeff

Tsys
=

ηrecηapAp

ηrecText + (1− ηrec)Tp + Tmin/ηn
(8.92)

If the antenna is a phased array feed with a reflector, then the external noise can be expanded into a com-
bination of sky noise and spillover noise as was done in (5.32). This result shows that the antenna terms
defined in this section can be combined into a system-level figure of merit in a consistent way.

For a complex active receiving array system, the design can be analyzed and optimized by considering
each of the efficiency parameters in this expression and maximizing each of them by adjusting the array
elements to maximize receiving efficiency and achieve a good impedance match to the receiver electronics.
Since these efficiencies all depend on beamformer coefficients, the beamforming process must be considered
together with the array element design, which means that optimizing highly sensitive active array receivers
is a challenging and interesting engineering problem.
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