
Chapter 1

Introduction

A communications link consists of a source of information, transmitter electronics including modulators,
mixers, power amplifiers, or other components, a transmitting antenna or array, the propagation environment,
a receiving antenna or array and associated receiver electronics, and signal processing to detect and decode
information from the received signal. Examples range from broadcast radio and wireless handsets to sending
commands to a deep space probe millions of miles from earth or controlling a smart drill bit at the bottom
of a thousand foot deep oil well. The purpose of this book is to develop the analytical tools required for
an end-to-end model of such a communications link, including antenna and propagation effects as well as
signal processing.

In communication theory, a link between a source of information and a destination is a channel. The key
measures of the goodness of a channel are the signal to noise ratio (SNR) and channel capacity. Channel
capacity is the maximum bit rate that can be reliably sent from transmitter to receiver. The capacity is
determined by the bandwidth of the channel and the signal to noise ratio (SNR) at the receiver output. The
SNR is influenced by the following factors:

Transmitter: Total radiated power, antenna radiation pattern, gain, and polarization.

Propagation environment: Distance between transmitter and receiver, multipath, blockage, loss, noise,
and interference.

Receiver: Antenna characteristics, amplifiers and receiver electronics, and signal processing.

The actual data rate achieved when a channel is used in practice is bounded above by the capacity. The
achieved data rate is determined by the signal modulation used to send information over the channel, so
coding and modulation theory are also important. Our goal is to understand each of these aspects of the
electromagnetic propagation channel and to model the overall performance of a communications channel in
terms of the transmitter characteristics, propagation environment, and receiver system.

In order to develop a complete channel model, we must consider antenna theory for both transmitting
and receiving antennas, specific antenna types and array antennas, noise theory, propagation channels, and
communication theory for both single antennas and multi-antenna systems. This will provide the tools
necessary to determine the SNR at the output of a communications link, the channel capacity, and the bit
error rate realized with the channel for a specific modulation scheme. These tools will also allow synthesis
of a communications system which meets a desired performance criterion.
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1.1 Link Budget Analysis

A simple tool for propagation analysis is a link budget, or a formula for the SNR at the receiving end of
a communication channel in terms of transmitted power, antenna gain, propagation loss, noise, and other
factors. The link budget combines all the major factors that determine the SNR for a communications
system. In this book, we will develop models for the various contributions to a system link budget. For
complex propagation environments and multiple input multiple output (MIMO) communications systems,
a simple link budget analysis is inadequate, and for those situations, we will develop more sophisticated
channel capacity models.

1.2 Applications

Applications of antennas and propagation modeling include everything from a basic point to point mi-
crowave communications link or radio broadcast system to modern technologies such as wireless local area
networks, satellite uplinks and downlinks, deep space communications, and MIMO systems. Many of the
same principles are applicable to other fields beyond voice and data transmission, such as receivers for radio
astronomy observations, magnetic resonance imaging, radar, global position systems, and remote sensing.
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Chapter 2

Antennas

As a device that transforms a wave on a transmission line to a wave in the space around the antenna, an
antenna has two key properties: the input impedance it presents to the transmission line, and the pattern of
the radiated fields. The goal of antenna analysis is to determine the impedance and radiation pattern from
the geometry and composition of the antenna structure. Designing an antenna based on desired impedance
and radiation properties is antenna synthesis.

Configured as a receiver, the antenna can be modeled as an equivalent voltage or current source con-
nected to a transmission line, with an open circuit voltage or short circuit current induced by an incident
field and a given source impedance. Typically, an antenna is modeled as a transmitter, and its receiving
properties are inferred using the electromagnetic reciprocity principle.

An antenna radiation problem is a boundary value problem, where the fields radiated by the antenna
are determined by Maxwell’s equations with material properties given by the shape and composition of the
antenna structure and a source excitation connected to the antenna terminals. Maxwell’s equations then
determine the electromagnetic fields around the antenna. From these fields, the voltage and current at the
antenna terminals can be computed to determine the antenna impedance, and the far fields determine the
antenna radiation pattern.

2.1 Antenna Analysis

One way to find the fields around the antenna is to use a numerical method to solve the boundary value
problem directly. All antenna parameters, including the antenna impedance, can be found in this way. For
simple antenna types, it is more convenient to develop approximate formulas for the antenna parameters
using analytical techniques.

One of the basic analytical techniques of antenna theory is to model the antenna as an equivalent current
distribution, which when impressed in free space radiates the same fields as the antenna structure with a
given excitation at the terminals. The radiation integral can be used to find the far fields, from which the
radiation pattern and radiation resistance can be computed. For a lossless antenna, the radiation resistance is
equal to the real part of the antenna impedance. The current is also sometimes used to estimate the additional
part of the antenna resistance due to ohmic losses in the antenna structure. A more sophisticated analysis or
a numerical method is usually required to model the antenna reactance and obtain an accurate value for the
antenna impedance.

Analytical current models are typically approximate and can be found only for simple antenna geome-
tries. For complex antennas, analytical current models are not available, and numerical methods are used to
solve Maxwell’s equations and find the field radiated by the antenna.

Common analytical current models and numerical methods used for antenna analysis include:
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Figure 2.1: The rectangular coordinate system.

Analytical approximations:

Hertzian dipole model (delta function current).

Linear antennas: triangular or sinusoidal current distributions.

Aperture antennas: aperture field is approximated by the incidence field that illuminates the
aperture.

Patch antennas: cavity model for fields under the patch.

Numerical methods

1D method of moments (MOM) for thin wires.

Surface method of moments (MOM) for perfect electric conductor (PEC) objects.

Volume method of moments (MOM) for composite dielectric and conducting structures.

Finite difference time domain (FDTD)

Finite element method (FEM)

The analytical approximations provide an equivalent current representation for the antenna, from which
the fields radiated by the current source can be found using a Green’s function and the radiation integral. A
Green’s function is the field radiated by a point or delta function source for a given set of boundary condi-
tions. It can be thought of as the impulse response of space. Boundary conditions may include dielectric
interfaces, conductors, and the radiation boundary condition at infinity. The most common case is the free
space Green’s function, which is available in analytic form. The field is then given by a radiation integral,
which is the convolution of the Green’s function with a current source.

2.1.1 Coordinate Systems

To give explicit numerical values for the sources and fields and to compute the derivatives in Maxwell’s
equations, a coordinate system is required. The most basic coordinate system is the rectangular coordinate
system. More generally, curvilinear coordinate systems can be defined, which simplifies the analysis of
electromagnetics problems involving curved geometries such as spheres and cylinders.
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Figure 2.2: The cylindrical coordinate system.

Rectangular Coordinates

The rectangular coordinate system is shown in Figure 2.1. Using this coordinate system, a point in a three-
dimensional (3-D) space can be represented by its distances x, y, and z from the origin of the coordinate
system along each of three orthogonal axes.

We define the three orthogonal unit vectors x̂, ŷ, and ẑ, which point in the directions of each of the three
coordinate axes, respectively, and which have unit length, so that ∥x̂∥ = ∥ŷ∥ = ∥ẑ∥ = 1. Using these unit
vectors, an arbitrary vector A can be expressed in terms of its length along each of the axes as

A = Axx̂+Ayŷ +Az ẑ (2.1)

where Ax, Ay, and Az are the components of the vector with respect to the rectangular coordinate system.
The dot product of two vectors can be represented as

A ·B = AxBx +AyBy +AzBz (2.2)

and the cross-product is

A×B = x̂(AyBz −AzBy) + ŷ(AzBx −AxBz) + ẑ(AxBy −AyBx) (2.3)

The magnitude or length of the vector A is

∥A∥ = (A ·A)1/2 = (A2
x +A2

y +A2
z)

1/2 (2.4)

If the components of the vector are complex, then the magnitude is

∥A∥ = (A ·A∗
)1/2 = (|Ax|2 + |Ay|2 + |Az|2)1/2 (2.5)

Cylindrical Coordinates

The circular cylindrical coordinate system is shown in Figure 2.2. The coordinates ρ, ϕ, z are related to the
rectangulr coordinates x, y, z by the formulas

x = ρ cosϕ (2.6a)

y = ρ sinϕ (2.6b)

z = z (2.6c)
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Figure 2.3: The spherical coordinate system.

and

ρ =
√
x2 + y2 (2.7a)

ϕ = tan−1 y

x
(2.7b)

z = z (2.7c)

The unit vectors for this coordinate system are ρ̂, ϕ̂, and ẑ. Unlike the unit vectors associated with the
rectangular coordinate system, which are fixed vectors and independent of position, the vectors ρ̂ and ϕ̂
change direction depending on the angle ϕ. An arbitrary vector is expressed in terms of its cylindrical
components as

A = Aρρ̂+Aϕϕ̂+Az ẑ (2.8)

A vector is a coordinate-independent object, so a given vector can be represented in any given coordinate
system by transforming its components in one coordinate system to a new set of components with respect
to the basis vectors of another coordinate system. Tables of transformations among the representations of
vector components in rectangular, cylindrical, and spherical coordinates can be found in many references,
including [1].

Spherical Coordinates

The spherical cylindrical coordinate system is shown in Figure 2.3. The coordinates r, θ, ϕ are related to the
rectangular coordinates x, y, z via

x = r sin θ cosϕ (2.9a)

y = r sin θ sinϕ (2.9b)

z = r cos θ (2.9c)

and

r =
√
x2 + y2 + z2 (2.10a)

θ = tan−1

√
x2 + y2

z
(2.10b)

ϕ = tan−1 y

x
(2.10c)
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The unit vectors for this coordinate system are r̂, θ̂, and ϕ̂. An arbitrary vector can be expressed as

A = Arr̂ +Aθθ̂ +Aϕϕ̂ (2.11)

2.1.2 Vector Analysis

Electromagnetic fields are represented mathematically as vector fields. A vector field is a mapping from a
space such as R3 to a vector space. At each point in the space, the mapping evaluates to a vector. A vector
field can be represented as a vector with components that are functions of position, so that in the rectangular
coordinate system,

E(x, y, z) = Ex(x, y, z)x̂+ Ey(x, y, z)ŷ +Ez(x, y, z)ẑ (2.12)

where x̂ is a vector of length one, or unit vector, pointing in the direction of increase of the x coordinate.
The other unit vectors ŷ and ẑ are defined similarly.

The variation of a vector field with respect to position can be analyzed using the vector derivative oper-
ator

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (2.13)

This operator can be applied to a scalar f(x, y, z) to compute the gradient

∇f(x, y, z) = ∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (2.14)

The operator can be applied to a vector field using the cross product to produce the curl operation

∇×A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)
+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)
+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)
(2.15)

Or, it can be applied to a vector field using the dot product, to produce the divergence

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(2.16)

of the vector field.
For a vector field expressed in terms of its cylindrical components,

∇×A = ρ̂

(
1

ρ

∂Az
∂ϕ

−
∂Aϕ
∂z

)
+ ϕ̂

(
∂Aρ
∂z

− ∂Az
∂ρ

)
+ ẑ

1

ρ

(
∂

∂ρ
ρAϕ −

∂Aρ
∂ϕ

)
(2.17a)

∇ ·A =
1

ρ

∂ρAρ
∂ρ

+
1

ρ

∂Aϕ
∂ϕ

+
∂Az
∂z

(2.17b)

In the spherical coordinate system,

∇×A =
r̂

r sin θ

[
∂

∂θ
(Aϕ sin θ)−

∂Aθ
∂ϕ

]
+
θ̂

r

[
1

sin θ

∂Ar
∂ϕ

− ∂

∂r
(rAϕ)

]
+
ϕ̂

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
(2.18a)

∇ ·A =
1

r2
∂

∂r
r2Ar +

1

r sin θ

∂

∂θ
sin θAθ +

1

r sin θ

∂

∂ϕ
Aϕ (2.18b)

The gradient, curl, and divergence satisfy the identities

∇×∇f = 0 (2.19)

∇ · (∇×A) = 0 (2.20)
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as long as the function f and the components of the vector field A are smooth enough that partial derivative
operators can be interchanged without changing the result.

The Laplacian operator in the rectangular coordinate system is

∇2 =
∂2

∂x2
+

∂2

∂z2
+

∂2

∂z2
(2.21)

When applied to a vector field A, the Laplacian operator is related to the gradient, curl, and divergence
operators by

∇2A = −∇×∇×A+∇∇ ·A (2.22)

For a scalar quantity, this simplifies to
∇2f = ∇ · ∇f (2.23)

Another convenient notation is the position vector

r = xx̂+ yŷ + zẑ (2.24)

This is not a true vector in the usual sense, but instead is a compact way to represent the point with coordi-
nates (x, y, z) in three-dimensional space. Often, it is useful to represent the components of this vector in
the spherical coordinate system, so that

r = r sin θ cosϕx̂+ r sin θ sinϕŷ + r cos θẑ (2.25)

It is also useful to define the unit vector

r̂ =
r

∥r∥
= sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (2.26)

The length ∥r∥ =
√
x2 + y2 + z2 is the distance from the point (x, y, z) to the origin, which is also given

by the symbol r, or the radial coordinate in the spherical coordinate system. The unit vector r̂ points from
the origin to the point (x, y, z), but has unit length. With this notation, we can represent position-dependent
functions such as the phase of a plane wave field solution in a compact, intuitive way using the dot product
of r and another vector.

2.1.3 Maxwell’s Equations

Maxwell’s equations for the electromagnetic field are expressed in terms of electric and magnetic vector
fields E, D, H , and B, and the source quantities J and ρ. These vector fields and one scalar quantity are
defined in Table 2.1 along with the units of each. Other systems of units are available, but the International
System of Units (SI) convention is used throughout this book.

The vector fields used to represent electromagnetic fields are governed by Maxwell’s equations. These
equations can be written in differential or integral form. For wave propagation analysis, it is convenient to
begin with the differential or point forms of the equations. Maxwell’s equations in point form are

∇× E = −∂B
∂t

(2.27a)

∇×H =
∂D

∂t
+ J (2.27b)

∇ ·D = ρ (2.27c)

∇ ·B = 0 (2.27d)

The first pair of equations are Faraday’s and Ampére’s laws, respectively, and the second pair are Gauss’s
laws for the electric and magnetic flux density. This set of coupled differential equations governs the behav-
ior of static fields due to fixed charge sources as well as the waves radiated by dynamic sources.
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Table 2.1: The Field and Source Quantities of Electromagnetics
Name Symbol Dimension

Electric Field Intensity E V/m
Magnetic Field Intensity H A/m
Electric Flux Density D C/m2

Magnetic Flux Density B Wb/m2

Electric Current Density J A/m2

Electric Charge Density ρ C/m3

2.1.4 Constitutive Relations

In free space or a vacuum, the flux density and field intensity vectors are related by the constitutive relations

D = ϵ0E (2.28a)

B = µ0H (2.28b)

where the permittivity of free space is ϵ0 ≃ 8.854×10−12 F/m and the permeability is µ0 = 4π×10−7 A/m.
The constitutive relations can be modified to introduce models for the effect on the electromagnetic field of
materials such as dielectrics. In an inhomogeneous dielectric medium, the permeability and permittivity are
functions of position, so that the constitutive relations become

D = ϵ(x, y, z)E (2.29a)

B = µ(x, y, z)H (2.29b)

The relative permittivity ϵr and relative permeability µr are defined according to

ϵ = ϵrϵ0 (2.30a)

µ = µrµ0 (2.30b)

Conductive materials can be modeled by adding a conduction current or induced current term to the
right-hand side of Ampére’s law. The induced current density is

J = σ(x, y, z)E (2.31)

where σ is the conductivity of the material. When analyzing electromagnetic systems, it is often convenient
to introduce an impressed current to represent sources driven by excitations outside of the modeled region
of interest. Strictly speaking, all electric currents are induced by electric fields according to (2.31). For
engineering work, it is impractical to model all currents using (2.31). The electric fields inside the signal
generator that drive a current in a transmission line, for example, are nearly completely shielded from the
fields radiated by an antenna, so it makes little sense to model the antenna, transmission line, and signal
generator as a complete system. It is more efficient to simply consider the current source that excites the
antenna to be fixed. A fixed current that excites a system is referred to as an impressed current. Mathe-
matically, an impressed current is a given source term in Ampère’s law (2.27b), or a forcing function in
differential equation terminology. The total current on the right-hand side of Ampère’s law is the sum of the
induced and impressed currents

J = J ind + J imp

where J ind = σE.
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2.1.5 Time- and Frequency-Domain Representations

For many applications, the signals transmitted in communications systems are narrowband. For narrowband
signals, it is often a good approximation to treat the signal as a pure tone or sinusoidal waveform. This
approximation is based on the assumption that the antenna characteristics in the system and the propagation
environment are close to constant over the bandwidth of the signal. If this assumption holds, then Maxwell’s
equations can be transformed to what is variously known as the frequency domain, sinusoidal steady state
form or phasor domain. This representation simplifies the mathematical treatment of electromagnetic fields
for narrowband systems.

The time-domain and phasor forms of the electric field intensity are related by

E(x, y, z, t) = Re[E(x, y, z)ejωt] (2.32)

where E(x, y, z, t) is the time-varying electric field and E(x, y, z) is the phasor representation. In some
treatments, particulary in the physics literature, the time variation is of the form e−iωt, in which case phasors
are complex conjugated relative to the convention of (2.32). This same definition holds for the electric flux
density, magnetic field intensity and flux density, and the source quantities J and ρ.

Because we are assuming that the signal is a pure sinusoid, the phasor in (2.32) is constant. If the signal
were modulated, so that it is not a pure sinusoid, then the complex quantity E(x, y, z) would be a function
of time, E(x, y, z, t). This is referred to as the complex analytic or complex baseband signal representation,
and is covered in Section 8.1.8. For much of this book, the pure sinusoidal approximation is valid, and the
phasor is independent of time. In (2.32), an underline is used to distinguish the phasor quantity from the time
varying field intensity. Some texts use a different typeface to represent time-domain fields and phasors, such
as E(x, y, z, t) in the time domain and E(x, y, z) for phasors. Because we will use the phasor form of the
field quantities exclusively in this text, the underline will be omitted and the phasor electric field represented
simply as E.

In the phasor or frequency domain, Maxwell’s equations are

∇× E = −jωB (2.33a)

∇×H = jωD + J (2.33b)

∇ ·D = ρ (2.33c)

∇ ·B = 0 (2.33d)

where all field and source quantities are complex-valued vectors or scalars. The time derivatives in (2.27)
are no longer present and have been replaced by factors of jω. For the remainder of this book, we will use
Maxwell’s equations in frequency domain form.

2.1.6 Free Space Green’s Function

A fundamental tool used to analyze electromagnetic systems is the field radiated by a point source in a
system with a given set of boundary conditions. This is referred to as a Green’s function. The fields radiated
by an arbitrary, distributed source can be found by convolving the source distribution with the Green’s
function.

One approach to finding the fields radiated by a point source is to transform the first order system of
Maxwell’s equations into a single second order partial differential equation (PDE). Taking the curl of both
sides of Faraday’s law (2.33a) and using the constitutive relation (2.30b) yields

∇×∇× E = −jωµ∇×H (2.34)
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We have assumed that the permeability µ is invariant of position (the medium or material in which the wave
propagates is spatially homogeneous), which allowed the curl operator to be moved past the factor of µ on
the right-hand side of this expression. Substituting Ampère’s law into this expression with J = 0 leads to

∇×∇× E = ω2µϵE − jωµJ (2.35)

Here, we have assumed that the material parameters are constant, which allowed a time derivative to be
moved past the factor of ϵ.

Since the Laplacian operator as given by (2.21) is much simpler than the double curl operator in (2.35),
the next step is to apply the identity (2.22) to eliminate the double curl. Using Gauss’s law for the electric
field, and assuming that there are no sources (ρ = 0) and the medium is homogeneous, we have

∇ · E =
1

ϵ
∇ ·D = 0 (2.36)

so that the identity (2.22) applied toE becomes ∇×∇×E = −∇2E. Using this to simplify (2.35) produces
the Helmholtz equation

∇2E + ω2ϵµE = jωµJ (2.37)

We define the wavenumber to be k = ω
√
ϵµ, or k = ω/c, where the constant c is the speed of wave

propagation,

c =
1

√
µϵ

(2.38)

In a vacuum, c ≃ 2.998× 108m/s. This simplifies the Helmholtz equation to

[∇2 + k2]E(r) = jωµJ(r) (2.39)

which is the governing PDE for the electric field intensity radiated by a time-harmonic source.
To find a Green’s function for this PDE, we need to solve for the electric field radiated by a point source

of the form
J(r) = p̂δ(r − r′) (2.40)

where r′ is the location of the source and p̂ is the orientation, and the electric field also satisfies a given
boundary condition, either at a conductive surface, a radiation boundary condition at infinity, or some other
condition that together with Maxwell’s equations uniquely defines the solution to the boundary value prob-
lem. The Green’s function is the electric field intensity vector as a function of position r, the location of the
point source r′, and the orientation p̂ of the source. With the Green’s function, the field due to an arbitrary
source can be found by convolving the source with the Green’s function.

Unfortunately, there are mathematical difficulties associated with finding the Green’s function for either
(2.35) or (2.39). The derivative operator in (2.35) is complicated, so it is difficult to solve this equation
directly for the Green’s function. Equation (2.39) has a simpler derivative operator, but the Helmholtz
equation has more solutions than Maxwell’s equations (longitudinal waves), so those nonphysical solutions
must be eliminated from the convolution of the Green’s function with the source to obtain a valid electric
field.

To overcome these difficulties, we can define an auxiliary potential that also satisfies a Helmholtz type
PDE from which valid electric and magnetic fields can be derived. Gauss’s law for the magnetic flux density
is

∇ ·B = 0 (2.41)

Using a theorem from differential geometry, it follows that B is the curl of some vector field, which means
that the magnetic flux density can be represented in the form

B = ∇×A (2.42)
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where A is called the magnetic vector potential. Using this in Faraday’s law, we find that

∇× (E + jωA) = 0 (2.43)

Using another theorem from differential geometry, the quantity in parenthesis in this expression must be the
gradient of some scalar function, so that

E + jωA = −∇ϕ (2.44)

In the static case (ω = 0), ϕ is the electric potential. The negative sign in (2.44) is included so that ϕ agrees
with the usual sign convention for electric potential.

Using (2.44) in Ampere’s law leads to

[−∇×∇×+k2]A = jωµϵ∇ϕ− µJ (2.45)

Using the identity (2.22) for the Laplacian operator,

[∇2 + k2]A = −µJ + jωµϵ∇ϕ+∇∇ ·A (2.46)

The last two terms on the right are inconvenient, but we can eliminate them. Since there are vector fields
with zero curl, it follows that there are many vector fields A that satisfy (2.42) for a given magnetic flux
density B. If we choose the particular vector potential for which

∇ ·A = −jωϵµϕ (2.47)

then the undesirable terms in (2.46) are zero. This choice for the extra degree of freedom in the magnetic
vector potential is known as the Lorenz gauge. Using this in (2.46) leads to the Helmholtz equation

[∇2 + k2]A = −µJ (2.48)

This is similar in form to (2.39), but the solution to the PDE is the magnetic vector potential, rather than the
electric field intensity. If we solve (2.48) for the magnetic vector potential and then find the electric field
using (2.47) and (2.44), we are guaranteed to obtain a valid electromagnetic field solution. A and E are
similar as vector fields, except that the transformation from A to E removes the longitudinal wave part of
the magnetic vector potential, so that E represents a true physical solution to Maxwell’s equations.

Scalar Green’s Function

To find a Green’s function for Maxwell’s equations, we first need to find a second Green’s function for the
PDE (2.39). This second Green’s function allows us to find the magnetic vector potential due to an arbitrary
source, and is referred to as the scalar Green’s function.

Finding a Green’s function for a PDE means finding solution to the PDE with the right-hand side a point
source or delta function. The delta function is a three-dimensional source, which can be written as

J(r) = δ(x− x′)δ(y − y′)δ(z − z′) (2.49)

where the coordinates (x′, y′, z′) give the location of the point source. As a shorthand notation, we can
express the 3D source as

δ(x− x′)δ(y − y′)δ(z − z′) = δ(r − r′) (2.50)

where r′ = x′x̂+ y′ŷ+ z′ẑ. A boundary value problem requires both a PDE and a boundary condition. We
will take the boundary condition to be the radiation boundary condition, which means that fields propagate
outwards as the distance from the source approaches infinity.
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We will label the scalar Green’s function or solutionA(r) for a point source located at r′ as g(r, r′). The
scalar Green’s function is defined by the PDE

[∇2 + k2]g(r, r′) = −δ(r − r′) (2.51)

Since free space is homogeneous, the solution to the PDE is shift invariant. Without loss of generality, we
can shift r′ temporarily to zero, so that g(r, 0) = g(r) = g(r), and we have

[∇2 + k2]g(r) = −δ(r) (2.52)

With this adjustment, the Laplacian becomes considerably simpler, since g is now only a function of r. For
r > 0, the PDE reduces to the ordinary differential equation (ODE)

1

r2
∂

∂r

(
r2
∂g

∂r

)
+ k2g(r) = 0 (2.53)

Using a change of variables, we can transform this to a more familiar and easily solved ODE. If we let
u(r) = rg(r), then the differential equation becomes

d2

dr2
u(r) + k2u(r) = 0 (2.54)

which has the general solution
u(r) = Ae−jkr +Bejkr (2.55)

Transforming back to the original variable, we arrive at the general solution

g(r) = A
e−jkr

r
+B

ejkr

r
(2.56)

Since the original ODE is second order, the general solution has two independent terms with unknown
coefficients A and B. The values of these coefficients are fixed by the boundary condition and the strength
of the delta function source.

The radiation boundary condition at infinity implies that waves must be outgoing as the distance r from
the source becomes large, so we must have B = 0, and the Green’s function solution reduces to

g(r) = A
e−jkr

r
(2.57)

It now remains to find the constant A.
We will do this by ensuring that the left-hand side of (2.52) integrates to −1 over a volume containing

the origin. Integrating both sides of (2.52) over a ball V of radius r centered at the origin leads to∫
V
[∇2 + k2]A

e−jkr

r
dr = −

∫
V
δ(r − r′) dr (2.58)

By integrating each of the delta functions in (2.50) over x′, y′, and z′, respectively, the right-hand side
evaluates to −1. On the left-hand side of (2.58), the integral of the k2 term of the Helmholtz operator
applied to the Green’s function vanishes as the radius r becomes small, whereas the ∇2 term is more strongly
singular, and when integrated over V evaluates to a constant, no matter how small the radius of the ball. In
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fact, ∇2r−1 evaluates to a delta function at the origin, as implied by (2.52). By this reasoning, if the radius
of V is small, the left-hand side of (2.58) evaluates to∫

V
[∇2 + k2]A

e−jkr

r
dr ≃

∫
V
∇2A

1

r
dr

= A

∫
V
∇ · ∇1

r
dr

= A

∮
S
∇1

r
· dS

= −A
∮
S

1

r2
r2 sin θ dθ dϕ

= −4πA

where we have made use of the divergence theorem to transform the volume integral into a surface integral.
Using this result together with (2.58) shows that the value of the constant isA = 1/(4π). Shifting the source
point from the origin back to r′ leads to the final result

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|
(2.59)

where |r − r′| is the distance between the points (x, y, z) and (x′, y′, z′). This is the scalar free space
Green’s function, or the Green’s function for the Helmholtz equation with constant k and the radiation
boundary condition at infinity.

2.1.7 Radiation Integral

A linear system can be characterized by its output for a delta function input, or the impulse response. The
impulse response can be used to find the output of the system for an arbitrary input, by convolving the input
with the impulse response. The boundary value problem consisting of Maxwell’s equations as the governing
PDE together with the radiation boundary condition can be viewed as a linear system, where the input is
an impressed current source and the output is the field radiated by the source. A Green’s function can be
viewed as the spatial impulse response of this system. The field radiated by an arbitrary source can be found
by convolving the source distribution with the Green’s function. Physically, the convolution process adds
up the fields radiated by many small point sources that combine to make up the source distribution.

By this reasoning, the magnetic vector potential associated with an arbitrary source distribution J is
given by the integral of the scalar Green’s function g(r, r′) weighted by the source distribution J(r). This
leads to the radiation integral

A(r) = µ

∫
g(r, r′)J(r′) dr′ (2.60)

Since free space is a shift-invariant medium, the Green’s function can be written in the form g(r−r′), which
places the radiation integral into a convolution form. This can be seen in (2.59), which is only a function
of the distance between r and r′, and not the absolute locations of either point. The shift invariance of
empty space is analogous to a time-invariant linear system, for which the impulse response h(t, t′) is only a
function of the difference between t and t′, so that the impulse response can be given in the form h(t− t′).
In free space, the radiation integral for A can be simplified slightly to

A(r) = µ

∫
g(r − r′)J(r′) dr′ (2.61)
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If inhomogeneous materials are added to the problem, the Green’s function is no longer given by (2.59) nor
is it shift-invariant.

The electric field can be found in terms of the magnetic vector potential using (2.44) and the Lorenz
gauge, so that

E = −jωA−∇ϕ

= −jωA+
1

jωϵµ
∇∇ ·A (2.62)

= −jω
[
1 +

1

k2
∇∇·

]
A

Inserting (2.60) for the vector potential,

E(r) = −jωµ
[
1 +

1

k2
∇∇·

] ∫
g(r, r′)J(r′) dr′ (2.63)

This is the free space radiation integral for the electric field in terms of the scalar Green’s function and the
electric current density. This expression is similar to (2.60) for the magnetic vector potential, which shows
the close connection between E and A. The component of E that arises from the unity term in the square
brackets is identical to (2.60) with the exception of an additional scale factor of −jω. The key difference
is that the “∇∇” term in (2.63) removes the longitudinal wave component of the magnetic vector potential,
making E a valid solution to Maxwell’s equations.

2.1.8 Far Field Approximation

Often in antenna analysis we are only interested in the fields far from the antenna. In this case, we can sim-
plify the radiation integral considerably. The approximation is based on the first two terms of the expansion
of a binomial,

(1 + x)p ≃ 1 + px (2.64)

If the source is near the origin and the field observation point r is far from the origin, then we can use this
approximation for the binomial twice to obtain the result

|r − r′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

≃
√
x2 − 2xx′ + y2 − 2yy′ + z2 − 2zz′

=
√
r2 − 2r · r′

= r
√

1− 2r̂ · r′/r
≃ r(1− r̂ · r′/r)
= r − r̂ · r′ (2.65)

In making this approximation, we have dropped terms in a larger Taylor expansion of order 1/r2 or smaller
and retained the constant terms and terms that behave as 1/r as r → ∞. In other words, the far field
approximation is accurate to order 1/r as r becomes large.

The next step is to use the far field expansion (2.65) in the scalar Green’s function (2.59). The distance
|r = r′| appears twice in the scalar Green’s function, once in the phase and again in the denominator, but
we do not need to use approximations of the same accuracy in both places. In the phase term, a small
offset matters even if the wave has propagated a long distance, so we must use both terms of (2.65). The
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denominator does not vary as much if the distance |r = r′| changes slightly, so there we only need the
leading term of the far field expansion. Making these substitutions into the scalar Green’s function leads to

g(r, r′) ≃ e−jkr

4πr
ejkr̂·r

′
(2.66)

Another way to look at this is that the far field approximation is accurate to order 1/r, and when inserted
into the denominator of the scalar Green’s function the second term of the far field expansion leads to a
correction that is only of order 1/r2, so it can be dropped.

The derivative operators in (2.63) can also be simplified when the observation point is far from the
source. The terms in the gradient of the scalar Green’s function in the spherical coordinate system can be
divided into terms of order 1/r and higher order terms according to

∇e−jkr

r
= r̂

∂

∂r

e−jkr

r
+O(1/r2)

= r̂

(
−jk e

−jkr

r
− e−jkr

r2

)
+O(1/r2)

≃ −jkr̂ e
−jkr

r

This result suggests that the ∇ operator can be replaced with −jkr̂ when r is large.
Using this approximation in the radiation integral (2.63) leads to the far field radiation integral

E(r) = −jωµ(1− r̂r̂·)e
−jkr

4πr

∫
ejkr̂·r

′
J(r′) dr′ (2.67)

Each term in this expression has a physical meaning. The leading constant adjusts the units of the electric
field intensity. The r̂r̂ term subtracts out waves with electric field in the r direction, since these are longi-
tudinal waves and are not valid solutions of Maxwell’s equation. The identity term in 1 − r̂r̂· is what we
would have obtained if we had solved (2.39) directly without the use of the magnetic vector potential. The
term e−jkr represents the phase of a spherical wave as it moves away from the origin, and the factor of 1/r
accounts for spreading of energy radiated by the source over a sphere of radius r.

Vector Current Moment

The remaining integration at the far right of (2.67) is essentially a Fourier transform of the source distribu-
tion. This integral is referred to as the vector current moment N , or

N(r̂) =

∫
ejkr̂·r

′
J(r′) dr′ (2.68)

After the source point r′ is integrated out, the result of the integration depends on the unit vector r̂, which is

r̂ = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ (2.69)

It can be seen that r̂ depends only on the spherical angles θ and ϕ. The vector current moment therefore
captures the angular dependance of the fields radiated by the source J , and it can be written alternately
as N(θ, ϕ). The integral can be viewed as a transformation from the spatial dependence of the source
distribution to the angular dependence of the field. Comparing this integral with the Fourier transform of a
time-domain signal, the spatial dependence of the source is analogous to time, and the angles θ and ϕ are
analogous to frequency. This connection between the integral in (2.68) and the temporal Fourier transform
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means that all of the intuition, theorems, results, and concepts associated with the Fourier transform of a
time signal can be used to understand the angular dependence of the fields radiated by a given source. As
an example, a source with a small spatial extent, such as a delta function or point source, corresponds to
a radiated field with very broad angular distribution. This is analogous to the Fourier transform of a delta
function in time leading to a constant in frequency. Conversely, a signal that is nearly constant in time
corresponds to a narrowband signal with limited frequency content, which implies that a very large antenna
aperture is required to radiate a narrow beam pattern in angle. We will return to this concept later when
discussing specific types of antennas.

It often is convenient in practice to first compute the vector current moment, and then find the electric
field in terms of N . In terms of the vector current moment, the far electric field intensity is

E = −jωµ(1− r̂r̂·)e
−jkr

4πr
(θ̂Nθ + ϕ̂Nϕ + r̂Nr)

= −jωµe
−jkr

4πr
(θ̂Nθ + ϕ̂Nϕ) (2.70)

This expression shows that the electric field is similar to the vector current moment, but with the radial
component removed.

When working with far field quantities, the spherical coordinate system is used almost exclusively. This
means that the observation point r is represented by the coordinates (r, θ, ϕ). For the source point r′, on the
other hand, the coordinate system should match the geometry of the source. If we use spherical coordinates
for r and rectangular coordinates for r′, then the dot product in the phase term of the vector current moment
integral is

r̂ · r′ = (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) · (x′x̂+ y′x̂+ z′ẑ)

= x′ sin θ cosϕ+ y′ sin θ sinϕ+ z′ cos θ (2.71)

This form of of the dot product is useful for many antenna analysis problems. Using this in (2.68) leads to
the expression

N(r̂) =

∫
ejkxx

′
ejkxy

′
ejkzz

′
J(x′, y′, z′) dx′dy′dz′ (2.72)

This shows explicitly that the vector current moment is a 3D Fourier transform of the current source distri-
bution. The variables x′, y′, and z′ are integrated, leaving a result that is a function of kx = k sin θ cosϕ,
ky = k sin θ sinϕ, and kz = k cos θ. The only difference between this expression and a fully general 3D
Fourier transform is that the transformed variables kx, ky, and kz are arbitrary in the general case, whereas in
the vector current moment, they lie on a sphere of radius k. This is closely related to the dispersion relation
for plane waves propagating in free space, which is considered in Section 4.1.

2.1.9 Magnetic Current

A basic tool for solving electromagnetic problems is to transform a complex structure and source distribution
to a simpler source, often in free space, through the use of equivalent currents. This approach is based on the
equivalence theorem of electromagnetic theory. Often in using the equivalence theorem it is convenient to
use equivalent magnetic currents in addition to electric currents. There are apparently no isolated magnetic
charges in nature, but fictitious magnetic currents can still be introduced mathematically by adding a source
term M into Faraday’s law:

∇× E = −jωB −M (2.73)

The magnetic current density carries units Wb/m2/s, where Wb represents the weber, or the standard unit of
electric charge. Wb/m2/s is equivalent to V/m2, as can be seen by balancing the units with the left-hand side
of Faraday’s law, recalling that a spatial derivative introduces a unit factor of inverse length.
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By following an approach similar to that of Section 2.1.6, we can develop a radiation integral that finds
the electric field produced by the magnetic volume current distributionM . If there are no unbalanced electric
charges in a given region of interest, then ∇ ·D = 0, and therefore we can represent D as a curl according
to

D = −∇× F (2.74)

By analogy with (2.48), a Helmholtz type PDE for F can be obtained. Since we have already found the
Green’s function for the Helmhotlz equation, we know that the solution can be found by convolving the
Green’s function with the magnetic current distribution according to

E(r) = −∇×
∫
g(r, r′)M(r′) dr′ (2.75)

In the far field limit, this expression simplifies to

E(r) ≃ jk
e−jkr

4πr
r̂ × L(r) (2.76)

where the magnetic vector current moment is

L(r) =

∫
ejkr̂·r

′
M(r′) dr′ (2.77)

These results allow the far field contribution to be computed for magnetic current source distributions.

2.1.10 Electric and Magnetic Currents

For most types of materials, the constitutive relations together with Maxwell’s equations are linear in the
source distributions, which means that the fields radiated by electric and magnetic sources can be found
separately and added to find the total radiated field. Combining (2.70) and (2.76) leads to a combined far
field radiation integral for the electric field due to electric and magnetic currents,

E(r) ≃ jk
e−jkr

4πr

[
θ̂(−ηNθ − Lϕ) + ϕ̂(−ηNϕ + Lθ)

]
(2.78)

The far magnetic field is

H(r) ≃ jk
e−jkr

4πr

[
θ̂(Nϕ − Lθ/η) + ϕ̂(−Nθ − Lϕ/η)

]
(2.79)

These expressions represent the most general possible form for a spherical wave, which decays in amplitude
as 1/r and has spherical phase fronts (i.e., the phase depends on the radial coordinate r, from which it
follows that the surfaces of constant phase are spheres). It can be seen by inspecting these two expressions
that the electric and magnetic far fields are orthogonal in the far field and have no longitudinal component
in the r̂ direction. The angular dependence of the radiated fields on θ and ϕ as well as the polarization of
the fields are contained in the magnetic and electric vector current moments N and L. These results provide
important analytical tools for working with the fields radiated by antenna systems.
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