ECEn 665 Antennas and Propagation for Wireless Communication

Homework #25

Due April 19, 2023 at the beginning of class (may be turned in after class for half credit)

- (a) Implement the max-SNR beamformer. Let the noise model consist of azimuthally isotropic blackbody radiation with correlation matrix R_{mn} = σ_n²J₀(kr_{mn}) where r_{mn} is the distance between array elements m and n. The interferer is a point source with direction of arrival (DOA) φ_i and received power σ_i². The signal is a point source with DOA φ_s and power σ_s². Let the powers be ordered something like σ_i² = 10σ_s² = 100σ_n² (interferer dominated). For five isotropic elements spaced 0.5 λ apart, plot the array radiation pattern for the max-SNR beamformer. Put markers on the curve at φ_i and φ_s. (b) What happens to the beamformer as σ_n² becomes very small or very large?
- 2. Superimpose on this plot the pattern obtained with a maximum gain beamformer, which can be obtained by setting the noise correlation matrix in the max-SNR beamformer equal to the isotropic noise correlation matrix (e.g., set $\sigma_i^2 = 0$). How do the two patterns compare? Compute the signal to interference plus noise ratio (SINR) for the two beamformers.
- 3. Implement subspace projection and add the resulting pattern to the plot. Compute the SINR.